Yu Qianqian, Wang Jinhua, Zhang Weijie, et al. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. doi: 10.11729/syltlx20170150
Citation: Yu Qianqian, Wang Jinhua, Zhang Weijie, et al. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. doi: 10.11729/syltlx20170150

Development of scale-controlled premixed turbulent burner and the flame structure analysis

doi: 10.11729/syltlx20170150
  • Received Date: 2017-11-14
  • Rev Recd Date: 2018-01-02
  • Publish Date: 2018-04-25
  • The structure-variable premixed turbulent burner is developed to investigate the effects of single turbulence parameters on flame structure, and to broaden turbulence intensity and scale range. Hot-wire anemometer measurements of cold flow indicate that the burner can utilize different geometry structures to produce scale-controlled flow field and realize the investigation of the effects of single turbulence parameters on flame structure. Fifteen representative structures were selected for the premixed turbulent combustion experiment. OH-PLIF images show that high turbulence intensity enhances flame surface wrinkling, as well as increasing the number of island structures. Data are reported at 1 < u'/SL, 0 < 10 for CH4/air flames with equivalence ratio of 0.7 in the thin reaction zones. Increasing integral scale decreases the turbulent burning velocity at high Reynold number. There may exist a critical Rec which can represent the degree of how inertial forces are dominant to determine the effect of the integral scale on the turbulent burning velocity. Increasing the integral scale can also enlarge the flame volume, due to larger vortex containing higher energy. However, intensive turbulence intensity can wrinkle the flame surface much more remarkably, resulting in superposition of small scales on large scales. Therefore, the increasing turbulence intensity increases the flame volume more significantly, covering up the impact of integral scale on flame volume. These results indicate that the effect of integral scale (represent large scale) on the flame heat release rate is less significant than the effect of turbulence intensity (represent superposition degree of small scales on large scales).
  • loading
  • [1]
    Peters N. Turbulent combustion[M]. Cambridge:Cambridge University Press, 2000.
    [2]
    Lipatnikov A. Fundamentals of premixed turbulent combustion[M]. Abingdon:Taylor & Francis Group, 2013.
    [3]
    Leisenheimer B, Leuckel W. Self-generated acceleration of confined deflagrative flame fronts[J]. Combustion Science and Technology, 1996, 118(1-3):147-164. doi: 10.1080/00102209608951976
    [4]
    Ballal D R. The structure of a premixed turbulent flame[J]. Proceedings of the Royal Society of London, 1979, 367(1730):353-380. doi: 10.1098/rspa.1979.0093
    [5]
    Li S C, Libby P A, Williams F A. Experimental investigation of a premixed flame in an impinging turbulent stream[J]. Symposium on Combustion, 1994, 25(1):1207-1214. doi: 10.1016/S0082-0784(06)80760-5
    [6]
    Shepherd I G, Bourguignon E, Michou Y, et al. The burning rate in turbulent bunsen flames[J]. Symposium on Combustion, 1998, 27(1):909-916. doi: 10.1016/S0082-0784(98)80488-8
    [7]
    Ting D S K, Checkel M D, Haley R, et al. Early flame acceleration measurements in a turbulent spark-ignited mixture[R]. SAE Technical Paper 940687, 1994.
    [8]
    Yoshida A, Tsuji H. Characteristic scale of wrinkles in turbulent premixed flames[J]. Symposium on Combustion, 1982, 19(1):403-411. doi: 10.1016/S0082-0784(82)80212-9
    [9]
    Kobayashi H, Kawahata T, Seyama K, et al. Relationship between the smallest scale of flame wrinkles and turbulence characteristics of high-pressure, high-temperature turbulent premixed flames[J]. Proceedings of the Combustion Institute, 2002, 29(2):1793-1800. doi: 10.1016/S1540-7489(02)80217-6
    [10]
    Lawn C J, Schefer R W. Scaling of premixed turbulent flames in the corrugated regime[J]. Combustion and Flame, 2006, 146(1-2):180-199. doi: 10.1016/j.combustflame.2006.03.010
    [11]
    Tanahashi M, Yu Y, Miyauchi T. Effects of turbulence characteristic length scale on hydrogen-air turbulent premixed flames[J]. Thermal Science and Engineering, 2001, 9:39-48. doi: 10.1007%2Fs12206-009-0409-1
    [12]
    Yu Y, Tanahashi M, Miyauchi T. Relation between turbulence characteristic length scale and local flame structure in turbulent premixed H2-air flames[C]. The Japanese 38th Symposium on Combustion, 2000.
    [13]
    Tanahashi M, Fujimura M, Miyauchi T. Coherent fine-scale eddies in turbulent premixed flames[J]. Proceedings of the Combustion Institute, 2000, 28(1):529-535. doi: 10.1016/S0082-0784(00)80252-0
    [14]
    Lachauxa T, Haltera F, Chauveaua C, et al. Flame front analysis of high-pressure turbulent lean premixed methane-air flames[J]. Proceedings of the Combustion Institute, 2004, 30(1):819-826. https://www.sciencedirect.com/science/article/pii/S0082078404002437
    [15]
    Yuen F T C, Ömer L Gülder. Premixed turbulent flame front structure investigation by Rayleigh scattering in the thin reaction zone regime[J]. Proceedings of the Combustion Institute, 2009, 32(2):1747-1754. doi: 10.1016/j.proci.2008.08.005
    [16]
    Marshall A, Venkateswaran P, Noble D, et al. Development and characterization of a variable turbulence generation system[J]. Experiments in Fluids, 2011, 51(3):611-620. doi: 10.1007/s00348-011-1082-6
    [17]
    Skiba A W, Wabel T, Temme J, et al. Measurements to determine the regimes of turbulent premixed flames[C]. AIAA/SAE/ASEE Joint Propulsion Conference, 2013.
    [18]
    Zhang M, Wang J H, Xie Y L, et al. Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames[J]. Experimental Thermal and Fluid Science, 2014, 52(1):288-296.
    [19]
    Laws E M, Livesey J L. Flow through screens[J]. Annual Review of Fluid Mechanics, 1978, 10(1):247-266. doi: 10.1146/annurev.fl.10.010178.001335
    [20]
    Mazellier N, Danaila L, Renou B. Multi-scale energy injection:a new tool to generate intense homogeneous and isotropic turbulence for premixed combustion[J]. Journal of Turbulence, 2010, 11(43):1-30. https://core.ac.uk/display/49941649
    [21]
    Driscoll J F. Turbulent premixed combustion:Flamelet structure and its effect on turbulent burning velocities[J]. Progress in Energy and Combustion Science, 2008, 34(1):91-134. doi: 10.1016/j.pecs.2007.04.002
    [22]
    Zhang M, Wang J H, Xie Y L, et al. Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames[J]. International Journal of Hydrogen Energy, 2013, 38(26):11421-11428. doi: 10.1016/j.ijhydene.2013.05.051
    [23]
    Kobayashi H, Hagiwara H, Kaneko H, et al. Effects of CO2 dilution on turbulent premixed flames at high pressure and high temperature[J]. Proceedings of the Combustion Institute, 2007, 31(1):1451-1458. doi: 10.1016/j.proci.2006.07.159
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (239) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return