Gao Guochi, Ding Li, Li Baoliang, et al. Airworthiness certification technology about icing wind tunnel test for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 85-94. doi: 10.11729/syltlx20180067
Citation: Gao Guochi, Ding Li, Li Baoliang, et al. Airworthiness certification technology about icing wind tunnel test for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 85-94. doi: 10.11729/syltlx20180067

Airworthiness certification technology about icing wind tunnel test for pneumatic de-icing aircraft

doi: 10.11729/syltlx20180067
  • Received Date: 2018-06-28
  • Rev Recd Date: 2018-12-03
  • Publish Date: 2019-04-25
  • Civil aircraft should conduct icing airworthiness certification according to relevant icing airworthiness regulation requirements, so understanding the airworthiness regulations requirements and formulating the effective conformity certification process are the key points of airworthiness certification. Based on an engineering application of icing wind tunnel test for the Y12F aircraft, relative airworthiness documents, latest aircraft icing research results, certification requests and techniques are summarized, such as setting of target test cases, confirmation of facility, transformation of test cases, test model designing and manufacturing, icing wind tunnel testing and so on. The formed airworthiness certification method conducts the certification of Y12F airplane de-icing system effectively, which is accepted by Civil Aviation Administration of China (CAAC) and Federal Aviation Administration (FAA) synchronously, and it lays a good foundation for getting the aircraft certification of CAAC and FAA.
  • loading
  • [1]
    Smalley C L. Certification of Part 23 airplanes for flight in icing conditions[R]. FAA: AC23. 1419-2D, 2007.
    [2]
    Potapczuk M G. Lewice E: an Euler based ice accretion code[R]. NASA-TM-105389, 1992.
    [3]
    Ruff G A, Berkowitz B M. Users manual for the NASA Lewis ice accretion prediction code (Lewice)[R]. NASA-CR-185129, 1990.
    [4]
    Brandi V, Mingione G. Ice accretion prediction on multi-element airfoils[R]. AIAA-1997-0177, 1997.
    [5]
    Croce G, Beaugendre H, Habashi W G. CHT3D: FENSAP-ICE conjugate heat transfer computations with droplet impingement and runback effects[R]. AIAA-2002-0386, 2002.
    [6]
    Bartlett C S. An empirical look at tolerances in setting icing test conditions with particular application to icing similitude[R]. DOT/FAA/CT-87/31 and AEDC-TR-87-23, 1988.
    [7]
    Bragg M, Broeren A, Addy H, et al. Airfoil ice-accretion aerodynamics simulation[R]. AIAA-2007-85, 2007.
    [8]
    Cabler S J M. Aircraft ice protection[R]. FAA: AC20-73A, 2006.
    [9]
    中国民用航空局.航空器型号合格审定程序: AP-21-AA-2011-03-R4[S].北京: 中国民用航空局航空器适航审定司, 2011.
    [10]
    Jones A R, Lewis W. Recommended values of meteorological factors to be considered in the design of aircraft ice-prevention equipment[R]. NACA-TN-1855, 1949.
    [11]
    Hacker P T, Dorsch R G. A summary of meteorological conditions associated with aircraft icing and a proposed method of selecting design criterions for ice-protection equipment[R]. NACA-TN-2569, 1951.
    [12]
    Lewis W, Bergrun N R. A probability analysis of the meteorological factors conductive to aircraft icing in the United States[R]. NACA-TN-2738, 1952.
    [13]
    Gent R W, Dart N P, Cansdale J T. Aircraft icing[J]. Phil Trans R Soc Lon A, 2000, 358:2873-2911. doi: 10.1098/rsta.2000.0689
    [14]
    中国民用航空局.运输类飞机适航标准: CCAR-25-R4[S].北京: 中国民用航空局政策法规司, 2011.
    [15]
    Pellicano Paul. Supercooled large droplet (SLD) icing and certification of Part 23 airplanes[C]//Proc of the FAA 2009 Small Airplane Directorate Program Managers Meeting. 2009.
    [16]
    Broeren A P, Bragg M B. Effect of residual and intercycle ice accretions on airfoil performance[R]. DOT/FAA/AR-02/68, 2002.
    [17]
    Pellicano P. Residual and inter-cycle ice for lower-speed aircraft with pneumatic boots[R]. AIAA-2007-1090, 2007.
    [18]
    Rios M, Riley J T, Dumont C J. A study of intercycle, residual, and preactivation ice accretion[R]. AIAA-2001-0089, 2001.
    [19]
    Broeren A P, Bragg M B, Addy H E. Effect of intercycle ice accretions on airfoil performance[J]. Journal of Aircraft, 2004, 41(1):165-174. doi: 10.2514/1.1683
    [20]
    Addy H E, Potatpczuk M G, Sheldon D W. Modern airfoil ice accretions[R]. AIAA-97-0174, 1997.
    [21]
    Bragg M B, Broeren A P, Blumenthal L A. Iced-airfoil aero-dynamics[J]. Progress in Aerospace Sciences, 2005, 41:323-362. doi: 10.1016/j.paerosci.2005.07.001
    [22]
    Broeren A, Bragg M B. Effect of airfoil geometry on performance with simulated intercycle ice accretions[J]. Journal of Aircraft, 2005, 42(1):121-130. doi: 10.2514/1.4734
    [23]
    Sae Society of Automotive Engineers. Calibration and acceptance of icing wind tunnels: SAE ARP 5905-2003[S]. AC-9C Aircraft Icing Technology Committee, 2003.
    [24]
    Pellicano Paul. Guidance for new airplane icing certification projects[C]//Proc of the SAE 2007 Aircraft & Engine Icing International Conference. 2007.
    [25]
    Kind R J. Scaling of icing tests:a review of recent progress[J]. AIAA Journal, 2003, 41(8):1421-1428. doi: 10.2514/2.2120
    [26]
    Anderson D N. Rime-, mixed-and glaze-ice evaluations of three scaling laws[R]. AIAA-94-0718, 1994.
    [27]
    Anderson D N. Manual of scaling methods[R]. NASA/CR-2004-212875, 2004.
    [28]
    中国民用航空局.正常类、实用类、特技类和通勤类飞机适航规定: CCAR-23-R3[S].北京: 中国民用航空局飞行标准司, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (342) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return