Yang Lei, Yang Xianglong, Wang Fujun. On the maximum spreading of liquid droplets impacting on soft surfaces[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 83-89. doi: 10.11729/syltlx20180086
Citation: Yang Lei, Yang Xianglong, Wang Fujun. On the maximum spreading of liquid droplets impacting on soft surfaces[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 83-89. doi: 10.11729/syltlx20180086

On the maximum spreading of liquid droplets impacting on soft surfaces

doi: 10.11729/syltlx20180086
  • Received Date: 2018-06-14
  • Rev Recd Date: 2018-11-29
  • Publish Date: 2019-06-25
  • With the method of the high-speed camera and image recognition, the spreading procedure of the liquid droplet impacting on the surface of Polydimethylsiloxane (PDMS) with different thickness and different modulus is obtained. The variation curves of between the spread factor with time are also plotted. Compared with the total energy of the system, the viscous energy dissipation caused by the compression deformation of the PDMS substrate is too small to affect the spreading procedure. In the case of lower impact velocity, the viscoelastic energy dissipation caused by the wetting ridge, which is formed on the surface of PDMS, is the major component of the total energy dissipation of the system. It increases with the decrease of the modulus of flexible materials. For this reason, the spread factor shows a decrease trend with the decrement of the modulus of PDMS. When the impact velocity increases, the viscous energy dissipation becomes the major component of the total energy dissipation and the spread factor remains unchanged with the change of the modulus of the flexible material.
  • loading
  • [1]
    van Dam D B, Le Clerc C. Experimental study of the impact of an ink-jet printed droplet on a solid substrate[J]. Physics of Fluids, 2004, 16(9):3403-3414. doi: 10.1063/1.1773551
    [2]
    Gavaises M, Theodorakakos A, Bergeles G. Modeling wall impaction of diesel sprays[J]. International Journal of Heat and Fluid Flow, 1996, 17(2):130-138. doi: 10.1016/0142-727X(95)00097-A
    [3]
    Sampath S, Jiang X. Splat formation and microstructure development during plasma spraying:deposition temperature effects[J]. Materials Science and Engineering:A, 2001, 304-306:144-150. doi: 10.1016/S0921-5093(00)01464-7
    [4]
    张洪, 张文倩, 郑英.过冷大水滴结冰探测技术研究进展[J].实验流体力学, 2016, 30(3):33-39. http://www.syltlx.com/CN/abstract/abstract10931.shtml

    Zhang H, Zhang W Q, Zheng Y. Research progress on supercooled large droplet icing detection technology[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3):33-39. http://www.syltlx.com/CN/abstract/abstract10931.shtml
    [5]
    叶学民, 李永康, 李春曦.受热基底上的液滴铺展及换热特性[J].物理学报, 2016, 65(23):234701. doi: 10.7498/aps.65.234701

    Ye X M, Li Y K, Li C X. Spreading and heat transfer characteristics of droplet on a heated substrate[J]. Acta Physica Sinica, 2016, 65(23):234701. doi: 10.7498/aps.65.234701
    [6]
    贾卫东, 朱和平, 董祥, 等.喷雾液滴撞击大豆叶片表面研究[J].农业机械学报, 2013, 44(12):87-94, 113. doi: 10.6041/j.issn.1000-1298.2013.12.015

    Jia W D, Zhu H P, Dong X, et al. Impact of spray droplet on soybean leaf surface[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12):87-94, 113. doi: 10.6041/j.issn.1000-1298.2013.12.015
    [7]
    Joung Y S, Buie C R. Aerosol generation by raindrop impact on soil[J]. Nature Communications, 2015, 6:6083. doi: 10.1038/ncomms7083
    [8]
    Liu Y Q, Sun N, Liu J W, et al. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops[J]. ACS Nano, 2018, 12(3):2893-2899. doi: 10.1021/acsnano.8b00416
    [9]
    Beemer D L, Wang W, Kota A K. Durable gels with ultra-low adhesion to ice[J]. Journal of Materials Chemistry A, 2016, 4(47):18253-18258. doi: 10.1039/C6TA07262C
    [10]
    Cao X, Yang J, Wang N, et al. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science[J]. Advanced Energy Materials, 2016, 6(23):1600665. doi: 10.1002/aenm.201600665
    [11]
    Bennett T, Poulikakos D. Splat-quench solidification:estimating the maximum spreading of a droplet impacting a solid surface[J]. Journal of Materials Science, 1993, 28(4):963-970. doi: 10.1007/BF00400880
    [12]
    Hung Y L, Wang M J, Liao Y C, et al. Initial wetting velocity of droplet impact and spreading:Water on glass and parafilm[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 384(1-3):172-179. https://www.sciencedirect.com/science/article/pii/S0927775711002354#!
    [13]
    毕菲菲, 郭亚丽, 沈胜强, 等.液滴撞击固体表面铺展特性的实验研究性[J].物理学报, 2012, 61(18):184702. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201218042

    Bi F F, Guo Y L, Shen S Q, et al. Experimental study of spread characteristics of droplet impacting solid surface[J]. Acta Physica Sinica, 2012, 61(18):295-300. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201218042
    [14]
    Scheller B L, Bousfield D W. Newtonian drop impact with a solid surface[J]. AIChE Journal, 1995, 41(6):1357-1367. doi: 10.1002/(ISSN)1547-5905
    [15]
    Mao T, Kuhn D C S, Tran H. Spread and rebound of liquid droplets upon impact on flat surfaces[J]. AIChE Journal, 1997, 43(9):2169-2179. doi: 10.1002/(ISSN)1547-5905
    [16]
    Roisman I V, Rioboo R, Tropea C. Normal impact of a liquid drop on a dry surface:model for spreading and receding[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2002, 458(2022):1411-1430. doi: 10.1098/rspa.2001.0923
    [17]
    Lee J B, Laan N, de Bruin K G, et al. Universal rescaling of drop impact on smooth and rough surfaces[J]. Journal of Fluid Mechanics, 2016, 786(4):R4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2b7029124f12288da1488593f93338b8
    [18]
    Huang H M, Chen X P. Energetic analysis of drop's maximum spreading on solid surface with low impact speed[J]. Physics of Fluids, 2018, 30(2):022106. doi: 10.1063/1.5006439
    [19]
    Shanahan M E R, Carre A. Viscoelastic dissipation in wetting and adhesion phenomena[J]. Langmuir, 1995, 11(4):1396-1402. doi: 10.1021/la00004a055
    [20]
    Pepper R E, Courbin L, Stone H A. Splashing on elastic membranes:The importance of early-time dynamics[J]. Physics of Fluids, 2008, 20(8):082103. doi: 10.1063/1.2969755
    [21]
    Rioboo R, Voué M, Adão H, et al. Drop impact on soft surfaces:beyond the static contact angles[J]. Langmuir, 2010, 26(7):4873-4879. doi: 10.1021/la9036953
    [22]
    Howland C J, Antkowiak A, Castrejon-Pita J R, et al. It's harder to splash on soft solids[J]. Physical Review Letters, 2016, 117(18):184502. doi: 10.1103/PhysRevLett.117.184502
    [23]
    Carre M, Shanahan M E R. Direct evidence for viscosity-independent spreading on a soft solid[J]. Langmuir, 1995, 11(3):24-26. doi: 10.1021/la00001a007
    [24]
    Alizadeh A, Bahadur V, Shang W, et al. Influence of substrate elasticity on droplet impact dynamics[J]. Langmuir, 2013, 29(14):4520-4524. doi: 10.1021/la304767t
    [25]
    Chen L Q, Auernhammer G K, Bonaccurso E. Short time wetting dynamics on soft surfaces[J]. Soft Matter, 2011, 7(19):9084-9089. doi: 10.1039/c1sm05967j
    [26]
    Chen L Q, Bonaccurso E, Deng P G, et al. Droplet impact on soft viscoelastic surfaces[J]. Physical Review E, 2016, 94(6):063117. doi: 10.1103/PhysRevE.94.063117
    [27]
    Chen L Q, Li Z G. Bouncing droplets on nonsuperhydrophobic surfaces[J]. Physical Review E. 2010, 82(1):016308. doi: 10.1103/PhysRevE.82.016308
    [28]
    Pasandideh-Fard M, Qiao Y M, Chandra S, et al. Capillary effects during droplet impact on a solid surface[J]. Physics of Fluids, 1996, 8(3):650-659. doi: 10.1063/1.868850
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (199) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return