Ji Yanguang, Kang Can, Zhang Yongchao. Investigation of wake flow characteristics for tandem hydraulic rotors using time-resolved PIV[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 97-105. doi: 10.11729/syltlx20180092
Citation: Ji Yanguang, Kang Can, Zhang Yongchao. Investigation of wake flow characteristics for tandem hydraulic rotors using time-resolved PIV[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 97-105. doi: 10.11729/syltlx20180092

Investigation of wake flow characteristics for tandem hydraulic rotors using time-resolved PIV

doi: 10.11729/syltlx20180092
  • Received Date: 2018-07-26
  • Rev Recd Date: 2018-10-09
  • Publish Date: 2019-06-25
  • To study the influence of the downstream rotor on the wake of the upstream rotor, the time-resolved particle image velocimetry (TR-PIV) was used to measure the flow between two hydraulic Bach rotors. For different flow velocities, the influence of the setting angle of the downstream rotor on the upstream rotor wake was considered, and wake characteristics associated with various kinds of rotor boundaries were compared and analyzed. The results indicate that as the upstream velocity increases, the velocity recovery zone extends towards the upstream rotor. As the setting angle of the downstream rotor is smaller than 108°, velocity decreases as the setting angle increases. Such a tendency is overturned as the setting angle exceeds 108°. The positions of the vortex cores in the wake are shifted up and down with the variation in the setting angle, and the vortices are stretched and flattened at certain setting angles. Meanwhile, streamlines are deflected with respect to the main flow, which is significantly different from the situation without the downstream rotor. At some setting angles, with the increase of the upstream flow velocity, high-vorticity regions gradually develop in the streamwise direction and towards the wake center. Meanwhile, the number of sparsely distributed small-scale vortices increases continuously. Large-scale vortex structures in the wake are involved in the first three orders of proper orthogonal decomposition (POD) modes, while the high-order POD modes are featured by small-scale flowstructures.
  • loading
  • [1]
    王蔚峰, 康灿, 杨敏官.新型垂直轴螺旋型风力叶轮的研究[J].太阳能学报, 2013, 34(8):1421-1426. doi: 10.3969/j.issn.0254-0096.2013.08.020

    Wang W F, Kang C, Yang M G. Research of a novel spiral vertical-axis wind turbine rotor[J]. Acta Energiae Solaris Sinica, 2013, 34(8):1421-1426. doi: 10.3969/j.issn.0254-0096.2013.08.020
    [2]
    Kacprzak K, Liskiewicz G, Sobczak K. Numerical investigation of conventional and modified Savonius wind turbines[J]. Renewable Energy, 2013, 60(4):578-585. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=588f9b8b7e7eaf460f99452541ab863a
    [3]
    Jaohindy P, Ennamiri H, Garde F. Numerical investigation of airflow through a Savonius rotor[J]. Wind Energy, 2014, 17(6):853-868. doi: 10.1002/we.v17.6
    [4]
    Nasef M H, El-Askary W A, AbdEl-Hamid A A, et al. Evaluation of savonius rotor performance:static and dynamic studies[J]. Journal of Wind Engineering and Industrial Aerody-namics, 2013, 123(Part A):1-11. https://www.sciencedirect.com/science/article/pii/S0167610513001979#!
    [5]
    Zhang B S, Song B W, Mao Z Y, et al. A novel parametric modeling method and optimal design for Savonius wind turbines[J]. Energies, 2017, 10(3):1-20. https://www.mdpi.com/1996-1073/10/3/301/htm
    [6]
    Kang C, Yang X, Wang Y L. Turbulent flow characteristics and dynamics response of a vertical-axis spiral rotor[J]. Energies, 2013, 6(6):2741-2758. doi: 10.3390/en6062741
    [7]
    Kumar A, Saini R P. Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades[J]. Renewable Energy, 2017, 113:461-478. doi: 10.1016/j.renene.2017.06.020
    [8]
    Fujisawa N, Gotoh F. Visualization study of the flow in and around aSavonius rotor[J]. Experiments in Fluids, 1992, 12(6):407-412. doi: 10.1007/BF00193888
    [9]
    Torresi M, de Benedittis F A, Fortunato B, et al. Performance and flow field evaluation of a Savonius rotor tested in a wind tunnel[J]. Energy Procedia, 2014, 45:207-216. doi: 10.1016/j.egypro.2014.01.023
    [10]
    Sarma N K, Biswas A, Misra R D. Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power[J]. Energy Conversion and Manage-ment, 2014, 83:88-98. doi: 10.1016/j.enconman.2014.03.070
    [11]
    Gao X X, Yang H X, Lu L. Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model[J]. Applied Energy, 2016, 174:192-200. doi: 10.1016/j.apenergy.2016.04.098
    [12]
    Park J, Law K H. Layout optimization for maximizing wind farm power production using sequential convex programming[J]. Applied Energy, 2015, 151:320-334. doi: 10.1016/j.apenergy.2015.03.139
    [13]
    Zhang B S, Song B W, Mao Z Y, et al. A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines[J]. Energy, 2017, 121:341-335. doi: 10.1016/j.energy.2017.01.004
    [14]
    Zuo W, Wang X D, Kang S. Numerical simulations on the wake effect of H-type vertical axis wind turbines[J]. Energy, 2016, 106:691-700. doi: 10.1016/j.energy.2016.02.127
    [15]
    Lam H F, Peng H Y. Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations[J]. Renewable Energy, 2016, 90:386-398. doi: 10.1016/j.renene.2016.01.011
    [16]
    Shaheen M, El-Sayed M, Abdallah S. Numerical study of two-bucket Savonius wind turbine cluster[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 137:78-89. doi: 10.1016/j.jweia.2014.12.002
    [17]
    Shigetomi A, Murai Y, Tasaka Y, et al. Interactive flow field around two Savonius turbines[J]. Renewable Energy, 2011, 36(2):536-545. doi: 10.1016/j.renene.2010.06.036
    [18]
    孙科, 李岩, 王凯, 等.串列竖轴水轮机尾流场影响CFD模拟分析[J].哈尔滨工业大学学报, 2018, 50(5):185-191. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201805025

    Sun K, Li Y, Wang K, et al. CFD simulation analysis on the wake effect of tandem vertical axis tidal turbines[J]. Journal of Harbin Institute of Technology, 2018, 50(5):185-191. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201805025
    [19]
    Ahmadi-Baloutaki M, Carriveau R, Ting D S-K, et al. A wind tunnel study on the aerodynamic interaction of vertical axis wind turbines in array configurations[J]. Renewable Energy, 2016, 96(Part A):904-913. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=07f00a74e07a4512cd9756132087fb47
    [20]
    杨瑞, 张志勇, 王强, 等.串列风力机三维尾流场的实验研究[J].兰州理工大学学报, 2017, 43(5):60-64. doi: 10.3969/j.issn.1673-5196.2017.05.011

    Yang R, Zhang Z Y, Wang Q, et al. Experimental study of three-dimensional wake of tandem windturbines[J]. Journal of Lanzhou University of Technology, 2017, 43(5):60-64. doi: 10.3969/j.issn.1673-5196.2017.05.011
    [21]
    郭峰山, 贾明, 林伟豪, 等.竖轴潮流能水轮机群数值模拟研究[J].太阳能学报, 2014, 35(9):1810-1815. doi: 10.3969/j.issn.0254-0096.2014.09.039

    Guo F S, Jia M, Lin W H, et al. Numerical investigation of vertical tidal turbine arrays[J]. Acta Energiae Solaris Sinica, 2014, 35(9):1810-1815. doi: 10.3969/j.issn.0254-0096.2014.09.039
    [22]
    王勇, 郝南松, 耿子海, 等.基于时间解析PIV的圆柱绕流尾迹特性研究[J].实验流体力学, 2018, 32(1):64-70. http://www.syltlx.com/CN/abstract/abstract11081.shtml

    Wang Y, Hao N S, Geng Z H, et al. Measurements of circular cylinder's wake using time-resolved PIV[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1):64-70. http://www.syltlx.com/CN/abstract/abstract11081.shtml
    [23]
    Zhou T, Rempfer D. Numerical study of detailed flow field and performance of Savonius wind turbines[J]. Renewable Energy, 2013, 51(2):373-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7e5aa1225d9a37b666bdd34d84e9a27e
    [24]
    Hassanzadeh A R, Yaakob O B, Ahmed Y M, et al. Numerical simulation for unsteady flow over marine current turbine rotors[J]. Wind and Structures, 2016, 23(4):301-311. doi: 10.12989/was.2016.23.4.301
    [25]
    谢龙, 靳思宇, 王玉璋, 等.阀体后90°圆形弯管内部流场PIV测量及POD分析[J].实验流体力学, 2012, 26(3):21-25, 31. doi: 10.3969/j.issn.1672-9897.2012.03.004

    Xie L, Jin S Y, Wang Y Z, et al. PIV measurement and POD analysis of inner flow flied in 90° bending duct of circular-section with fore-end valve[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3):21-25, 31. doi: 10.3969/j.issn.1672-9897.2012.03.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (283) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return