Feng Yifang, Xie Hui, Chen Tao, et al. Mechanism of in-cylinder turbulence on the distribution of fuel activity in hybrid combustion[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 54-61,71. doi: 10.11729/syltlx20180096
Citation: Feng Yifang, Xie Hui, Chen Tao, et al. Mechanism of in-cylinder turbulence on the distribution of fuel activity in hybrid combustion[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 54-61,71. doi: 10.11729/syltlx20180096

Mechanism of in-cylinder turbulence on the distribution of fuel activity in hybrid combustion

doi: 10.11729/syltlx20180096
  • Received Date: 2018-07-18
  • Rev Recd Date: 2018-10-09
  • Publish Date: 2019-02-25
  • The interaction between fuel and turbulence under the in-cylinder limited conditions is the key issue for hybrid combustion controlled by fuel activity stratification. Dimethyl ether (DME) is injected to the cylinder to produce high activity fuel stratification. Particle image velocimetry, laser Rayleigh scattering, Mie scattering and high speed imaging combined with heat release analysis on the optical engine experiment platform are used to observe the flow field and combustion process of hybrid combustion in the limited space of cylinder. 3D Computational Fluid Dynamics (CFD) simulation are used to explain the experimental phenomena. Result shows that there is a large range of counter-clockwise vortex field in the cylinder, and the diffusion and evaporation process of DME is influenced by the flow. Under the flow field, the combustion process in the cylinder shows characteristics of DME auto-ignition in the distribution area, flame propagation, multi-point auto-ignition.
  • loading
  • [1]
    Galloni E. Analyses about parameters that affect cyclic variation in a spark ignition engine[J]. Applied Thermal Engineering, 2009, 29(5-6):1131-1137. doi: 10.1016/j.applthermaleng.2008.06.001
    [2]
    Xu K, Xie H, Chen T, et al. Effect of flame propagation on the auto-ignition timing in SI-CAI hybrid combustion (SCHC)[R]. SAE Technical Papers, 2014-01-2672, 2014.
    [3]
    Joelsson T, Yu R S, Bai X S. Large eddy simulation of turbulent combustion in a spark-assisted homogenous charge compression ignition engine[J]. Combustion Science and Technology, 2012, 184(7-8):1051-1065. doi: 10.1080/00102202.2012.663997
    [4]
    Yoo C S, Luo Z Y, Lu T F, et al. A DNS study of ignition characteristics of a lean iso-octane/air mixture under HCCI and SACI conditions[J]. Proceedings of the Combustion Institute, 2013, 34(2):2985-2993. http://cn.bing.com/academic/profile?id=3d13346ba0c59b3eafe6d8ff093d61a2&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    Xie H, Xu K, Chen T, et al. Investigations into the influence of Dimethyl Ether (DME) micro flame ignition on the combustion and cyclic variation characteristics of flame propagation-auto-ignition hybrid combustion in an optical engine[J]. Combustion Science and Technology, 2016, 189(3):453-477. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102202.2016.1223060
    [6]
    Cha J, Kwon S, Kwon S, et al. Combustion and emission characteristics of a gasoline-dimethyl ether dual-fuel engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2012, 226(12):1667-1677. doi: 10.1177/0954407012450122
    [7]
    Zhang H F. Experimental investigation of gasoline-dimethyl ether dual fuel CAI combustion with internal EGR[D]. London: Brunel University, 2011.
    [8]
    徐康. DME微火源对汽油机高稀释混合燃烧调控机理研究[D].天津: 天津大学, 2017.

    Xu K. Study of DME micro flame ignition hybrid combustion under high dilution conditions in a gasoline engine[D]. Tianjin: Tianjin University, 2017.
    [9]
    Xie H, Lu J, Chen T, et al. Chemical effects of the incomplete-oxidation products in residual gas on the gasoline HCCI auto-ignition[J]. Combustion Science and Technology, 2014, 186(3):273-296. doi: 10.1080/00102202.2013.858714
    [10]
    O'Rourke P J, Amsden A A. A spray/wall interaction submodel for the KIVA-3 wall film model[R]. SAE Technical Paper, 2000-01-0271, 2000.
    [11]
    Schmidt D P, Rutland C J. A new droplet collision algorithm[J]. Journal of Computational Physics, 2000, 164(1):62-80. doi: 10.1006-jcph.2000.6568/
    [12]
    Richards K J, Senecal P K, et al. Converge (Version 2.3) Manual[M]. Middleton, WI:Convergent Science Inc, 2016.
    [13]
    Turns S R. An introduction to combustion:concepts and applications[M]. New York:McGraw-Hill Education, 2012.
    [14]
    Cai L M, Pitsch H. Optimized chemical mechanism for combustion of gasoline surrogate fuels[J]. Combustion and Flame, 2015, 162(5):1623-1637. doi: 10.1016/j.combustflame.2014.11.018
    [15]
    Burke U, Somers K P, O'Toole P, et al. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures[J]. Combustion and Flame, 2015, 162(2):315-330. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45f4569671a0afe3e958124c08d9b46a
    [16]
    Chen Y L, Chen J Y. Application of Jacobian defined direct interaction coefficient in DRGEP-based chemical mechanism reduction methods using different graph search algorithms[J]. Combustion and Flame, 2016, 174:77-84. doi: 10.1016/j.combustflame.2016.09.006
    [17]
    Chen Y L, Chen J Y. Towards improved automatic chemical kinetic model reduction regarding ignition delays and flame speeds[J]. Combustion and Flame, 2018, 190:293-301. doi: 10.1016/j.combustflame.2017.11.024
    [18]
    Xie H, Li L, Chen T, et al. Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium-high load[J]. Applied Energy, 2013, 101:622-633. doi: 10.1016/j.apenergy.2012.07.015
    [19]
    Li Y, Zhao H, Ladommatos N. Analysis of large-scale flow characteristics in a four-valve spark ignition engine[J]. Journal of Mechanical Engineering Science, 2002, 216(9):923-938. doi: 10.1177/095440620221600906
    [20]
    Liu D M, Wang T Y, Jia M, et al. Cycle-to-cycle variation analysis of in-cylinder flow in a gasoline engine with variable valve lift[J]. Experiments in Fluids, 2012, 53(3):585-602. doi: 10.1007/s00348-012-1314-4
    [21]
    Huang Y, Sung C J, Eng J A. Laminar flame speeds of primary reference fuels and reformer gas mixtures[J]. Combustion and Flame, 2004, 139(3):239-251. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87b3f47808eb35330dfb30f8dd6d2633
    [22]
    Jerzembeck S, Peters N, Pepiot-Desjardins P, et al. Laminar burning velocities at high pressure for primary reference fuels and gasoline:experimental and numerical investigation[J]. Combustion and Flame, 2009, 156(2):292-301.
    [23]
    Daly C A, Simmie J M, Würmel J, et al. Burning velocities of dimethyl ether and air[J]. Combustion and Flame, 2001, 125(4):1329-1340. doi: 10.1016-j.proci.2004.08.251/
    [24]
    Zhao Z, Kazakov A, Dryer F L. Measurements of dimethyl ether/air mixture burning velocities by using particle image velocimetry[J]. Combustion and Flame, 2004, 139(1-2):52-60. doi: 10.1016/j.combustflame.2004.06.009
    [25]
    Qin X, Ju Y G. Measurements of burning velocities of dimethyl ether and air premixed flames at elevated pressures[J]. Proceedings of the Combustion Institute, 2005, 30(1):233-240. doi: 10.1016-j.proci.2004.08.251/
    [26]
    Wang Y L, Holley A T, Ji C, et al. Propagation and extinction of premixed dimethyl-ether/air flames[J]. Proceedings of the Combustion Institute, 2009, 32(1):1035-1042.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (130) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return