Chang Siyuan, Zou Dongyang, Liu Jun. Simulating hypersonic projectile launching process in the ballistic range by Adaptive Discontinuity Fitting solver technique[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 23-29. doi: 10.11729/syltlx20180104
Citation: Chang Siyuan, Zou Dongyang, Liu Jun. Simulating hypersonic projectile launching process in the ballistic range by Adaptive Discontinuity Fitting solver technique[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 23-29. doi: 10.11729/syltlx20180104

Simulating hypersonic projectile launching process in the ballistic range by Adaptive Discontinuity Fitting solver technique

doi: 10.11729/syltlx20180104
  • Received Date: 2018-08-01
  • Rev Recd Date: 2018-10-24
  • Publish Date: 2019-04-25
  • The free flight ballistic range is an important ground test method for the study of hypersonic vehicles. After the accelerated launch, the projectile is separated from the sabots in the range tank. The actual flying posture of the projectile is affected by many factors occurring in the processes of model acceleration and separation. Therefore, it is helpful to operate the experiment by developing simulation techniques for ballistic range tests. Considering the above processes, a set of numerical simulation algorithms is built. More specifically, the unstructured dynamic grid technique and Adaptive Discontinuity Fitting solver(ADFs) are used to track the motion of the projectile and sabots, and the cell-centered finite volume method is utilized to update the flow field.
  • loading
  • [1]
    任国民.弹道靶技术及其发展[J].弹道学报, 1994(1):90-96. http://d.old.wanfangdata.com.cn/Conference/49185

    Ren G M. Technology of ballistics range and its development[J]. Journal of Ballistics, 1994(1):90-96. http://d.old.wanfangdata.com.cn/Conference/49185
    [2]
    唐恩凌, 李志秋.二级轻气炮中组合式弹托分离器的应用[J].沈阳理工大学学报, 2012, 31(1):84-87. doi: 10.3969/j.issn.1003-1251.2012.01.022

    Tang E L, Li Z Q. The application of combined type dissociator of projectile from its seat in two-stage light gas gun[J]. Journal of Shenyang Ligong University, 2012, 31(1):84-87. doi: 10.3969/j.issn.1003-1251.2012.01.022
    [3]
    Gouge M J, Combs S K, Fisher P W, et al. Design considerations for single-stage and two-stage pneumatic pellet injectors[J]. Review of Scientific Instruments, 1989, 60(4):575-575. https://www.researchgate.net/publication/224501005_Design_considerations_for_single-stage_and_two-stage_pneumatic_pellet_injectors
    [4]
    庄宇, 陆欣.二级轻气炮内弹道过程数学建模及数值仿真[J].兵器装备工程学报, 2016, 37(12):75-79. doi: 10.11809/scbgxb2016.12.018

    Zhuang Y, Lu X. Mathematical modeling and numerical simulation for interior ballistics process of two-stage light-gas gun[J]. Journal of Ordnance Equipment Engineering, 2016, 37(12):75-79. doi: 10.11809/scbgxb2016.12.018
    [5]
    黄洁, 梁世昌, 李海燕, 等.二级轻气炮发射过程内弹道数值计算研究[J].空气动力学学报, 2013, 31(5):657-661. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201305021

    Huang J, Liang S C, Li H Y, et al. Numerical research on interior ballistics of the launch process of two-stage ligiht gas gun[J]. Acta Aerodynamica Sinica, 2013, 31(5):657-661. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201305021
    [6]
    管小荣, 徐诚.二级轻气炮发射过程数学模型和计算方法[J].南京理工大学学报:自然科学版, 2007, 31(1):22-26. http://d.old.wanfangdata.com.cn/Periodical/njlgdxxb200701005

    Guan X R, Xu C. Mathematical model and computing method for launch process of two-stage light-gas gun[J]. Journal of Nanjing University of Science and Technology, 2007, 31(1):22-26. http://d.old.wanfangdata.com.cn/Periodical/njlgdxxb200701005
    [7]
    Zou D Y, Xu C G, Dong H B, et al. A shock-fitting technique for cell-centred finite volume methods on unstructured dynamic meshes[J]. Journal of Computational Physics, 2017, 345:866-882. doi: 10.1016/j.jcp.2017.05.047
    [8]
    刘君, 邹东阳, 徐春光.基于非结构动网格的非定常激波装配方法[J].空气动力学学报, 2015, 33(1):10-16. doi: 10.7638/kqdlxxb-2014.0109

    Liu J, Zou D Y, Xu C G. An unsteady shock-fitting technique based on unstructured moving grids[J]. Acta Aerodynamica Sinica, 2015, 33(1):10-16. doi: 10.7638/kqdlxxb-2014.0109
    [9]
    Barth T J, Jespersen D C. The design and application of upwind schemes on unstructured meshes[C]//Proc of the 27th Aerospace Science Meeting. 1989.
    [10]
    阎超.计算流体力学方法与应用[M].北京:北京航空航天大学出版社, 2012.
    [11]
    许和勇, 叶正寅.悬停共轴双旋翼干扰流动数值模拟[J].航空动力学报, 2011, 26(2):453-457. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201102032

    Xu H Y, Ye Z Y. Numerical simulation of interaction unsteady flows around co-axial rotors in hover[J]. Journal of Aerospace Power, 2011, 26(2):453-457. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201102032
    [12]
    郭正, 刘君, 瞿章华.非结构动网格在三维可动边界问题中的应用[J].力学学报, 2003, 35(2):140-146. http://d.old.wanfangdata.com.cn/Periodical/lxxb200302003

    Guo Z, Liu J, Qu Z H. Dynamic unstructured grid method with applications to 3D unsteady flows involving moving boundaries[J]. Acta Mechanica Sinica, 2003, 35(2):140-146. http://d.old.wanfangdata.com.cn/Periodical/lxxb200302003
    [13]
    伍贻兆, 田书玲, 夏健.基于非结构动网格的非定常流数值模拟方法[J].航空学报, 2011, 32(1):15-26. http://d.old.wanfangdata.com.cn/Periodical/hkxb201101002

    Wu Y Z, Tian S L, Xia J. Unstructured grid methods for unsteady flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):15-26. http://d.old.wanfangdata.com.cn/Periodical/hkxb201101002
    [14]
    桑为民, 李凤蔚, 鄂秦.应用笛卡尔非结构切割网格进行外挂物投放的数值模拟[J].计算物理, 2002, 19(3):268-272. doi: 10.3969/j.issn.1001-246X.2002.03.017

    Sang W M, Li F W, E Q. Numerical simulation of the store separation using unstructured cartesian cutted grid[J]. Chinese Journal of Computational Physics, 2002, 19(3):268-272. doi: 10.3969/j.issn.1001-246X.2002.03.017
    [15]
    Murman S M, Aftosmis M J, Berger M J. Implicit approaches for moving boundaries in a 3-D Cartesian method[C]//Proc of the 41st Aerospace Sciences Meeting and Exhibit. 2003.
    [16]
    Batina J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1989, 28(8):1381-1388. doi: 10.2514-3.25229/
    [17]
    Jay C, Carpenter M H. Computational considerations for the simulation of shock-induced sound[R]. NASA-TM-110222, 1995.
    [18]
    Onofri M, Paciorri R. Shock fitting:classical techniques, recent developments, and memoirs of Gino Moretti[M]. Springer, 2017.
    [19]
    邹东阳, 刘君, 邹丽.可压缩流动激波装配方法在格心型有限体积中的应用[J].航空学报, 2017, 38(11):121363. http://www.cnki.com.cn/Article/CJFDTotal-HKXB201711013.htm

    Zou D Y, Liu J, Zou L. Applications of shock-fitting technique for compressible flow in cell-centered finite volume methods[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):121363. http://www.cnki.com.cn/Article/CJFDTotal-HKXB201711013.htm
    [20]
    王巍.有相对运动的多体分离过程非定常数值算法研究及实验验证[D].长沙: 国防科学技术大学, 2008.

    Wang W. Numerical simulation technique research and experiment verification for unsteady multi-body flowfield involving relative movement[D]. Chang Sha: National University of Defense Technology, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article Metrics

    Article views (217) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return