Wang Chengpeng, Yang Jinfu, Cheng Chuan, et al. Research on evolution of starting shock in a supersonic nozzle[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 11-16. doi: 10.11729/syltlx20180143
Citation: Wang Chengpeng, Yang Jinfu, Cheng Chuan, et al. Research on evolution of starting shock in a supersonic nozzle[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 11-16. doi: 10.11729/syltlx20180143

Research on evolution of starting shock in a supersonic nozzle

doi: 10.11729/syltlx20180143
  • Received Date: 2018-10-18
  • Rev Recd Date: 2018-12-18
  • Publish Date: 2019-04-25
  • The starting process of the flow in a Mach 2.7 supersonic nozzle is experimentally investigated. The starting shock moves from the throat to the exit of the nozzle when the incoming total pressure is gradually increased. The flow in the nozzle undergoes the process of normal shock at the throat, normal shock at the expansion duct, oblique shock at the expansion duct, Mach reflection at the exit of the nozzle, regular reflection at the exit of the nozzle and the design conditions. The transformation from the Mach reflection to the regular reflection is observed based on the experimental result of schlieren and PIV. The three-dimensional flow structure of the leading shocks of the shock train has been rebuilt by using the schlieren image system and the shear-sensitive liquid crystal technology.
  • loading
  • [1]
    王铁城.空气动力学实验技术[M].北京:航空工业出版社, 1985:36-48.

    Wang T C. Experimental technique for aerodynamics[M]. Beijing:Aviation Industry Press, 1985:36-48.
    [2]
    Babinsky H, Harvey J K. Shock wave-boundary-layer interactions[M]. Cambridge:Cambridge University Press, 2011:48-51.
    [3]
    童秉纲, 孔祥言, 邓国华.气体动力学[M].北京:高等教育出版社, 1990:82-90.

    Tong B G, Kong X Y, Deng G H. Gasdynamics[M]. Beijing:Higher Education Press, 1990:82-90.
    [4]
    陆志良.空气动力学[M].北京:北京航空航天大学出版社, 2009:109-113.

    Lu Z L. Aerodynamics[M]. Beijing:Beihang Press, 2009:109-113.
    [5]
    Matsuo K, Miyazato Y, Kim H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences, 1999, 35(1):33-100. doi: 10.1016/S0376-0421(98)00011-6
    [6]
    李桦, 范晓樯, 丁猛.超声速扩压器中激波串结构的数值模拟[J].国防科技大学学报, 2002, 24(1):18-21. doi: 10.3969/j.issn.1001-2486.2002.01.005

    Li H, Fan X Q, Ding M. Numerical simulation of the shock train structure in the supersonic diffuser[J]. Journal of National University of Defense Technology, 2002, 24(1):18-21. doi: 10.3969/j.issn.1001-2486.2002.01.005
    [7]
    Gnani F, Zare-Behtash H, Kontis K. Pseudo-shock waves and their interactions in high-speedintakes[J]. Progress in Aerospace Sciences, 2016, 82:36-56. doi: 10.1016/j.paerosci.2016.02.001
    [8]
    Chang J T, Li N, Xu K J, et al. Recent research progress on unstart mechanism, detection and control of hypersonic inlet[J]. Progress in Aerospace Sciences, 2017, 89:1-22. doi: 10.1016/j.paerosci.2016.12.001
    [9]
    Hornung H G, Taylor J R. Transition from regular to Mach reflection of shock waves Part 1. The effect of viscosity in the pseudosteady case[J]. Journal of Fluid Mechanics, 1982, 123:143-153. doi: 10.1017/S0022112082002997
    [10]
    Hornung H G, Robinson M L. Transition from regular to Mach reflection of shock waves Part 2. The steady-flow criterion[J]. Journal of Fluid Mechanics, 1982, 123:155-164. doi: 10.1017/S0022112082003000
    [11]
    Gao B, Wu Z N. A study of the flow structure for Mach reflection in steady supersonic flow[J]. Journal Fluid Mechanics, 2010, 656:29-50. doi: 10.1017/S0022112010001011
    [12]
    Xiang G X, Wang C, Teng H H, et al. Study on Mach stems induced by interaction of planar shock waves on two intersecting wedges[J]. Acta Mechanica Sinica, 2016, 32(3):362-368. doi: 10.1007/s10409-015-0498-2
    [13]
    Hu Z M, Myong R S, Kim M S, et al. Downstream flow condition effects on the RR→MR transition of asymmetric shock waves in steady flows[J]. Journal Fluid Mechanics, 2009, 620:43-62. doi: 10.1017/S0022112008004837
    [14]
    Ben-Dor G. Shock wave reflection phenomena[M]. Berlin:Springer Press, 2007:3-6.
    [15]
    Wang D, Yu Y. Shock wave configurations and reflection hysteresis outside a planar Laval nozzle[J]. Chinese Journal of Aeronautics, 2015, 28(5):1362-1371. doi: 10.1016/j.cja.2015.07.010
    [16]
    焦运.带入射激波高速流动的全局表面摩擦力场测量方法研究[D].南京: 南京航空航天大学, 2017: 14-19.

    Jiao Y. Global surface shear stress measurement in high-speed flow including incident shock waves[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 14-19.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (400) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return