Volume 34 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
ZHANG Shiyu, ZHAO Junbo, FU Zengliang, et al. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 49-54, 86. doi: 10.11729/syltlx20180157
Citation: ZHANG Shiyu, ZHAO Junbo, FU Zengliang, et al. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 49-54, 86. doi: 10.11729/syltlx20180157

Wind tunnel based virtual flight testing research of F-16 fighter

doi: 10.11729/syltlx20180157
  • Received Date: 2018-10-29
  • Rev Recd Date: 2018-12-20
  • Publish Date: 2020-02-25
  • A three degree-of-freedom (3-DOF) Wind Tunnel Based Virtual Flight Test (WTBVFT) system is developed to study unstable aerodynamic phenomena and maneuver characteristics coupling with motion of high-performance fighters maneuvering at high angle of attack. Based on this system, a series of 3-DOF virtual flight tests of F-16 fighter are performed. As the results, the short-time modes of flight dynamics are simulated from wind tunnel tests with small angle of attack, and control law are validated in those tests. Then an instability phenomenon in pitch is detected from tests with high angle of attack. A group of lateral-directional unstable aerodynamic-coupling motions are detected from tests when angle of attack is less than zero. In these tests, augmentation control of aileron cannot recover lateral-directional stability of flight, but always leading to control coupling motion. It is more effective to adopt elevator control to change angle of attack to recover the lateral-directional stability.
  • loading
  • [1]
    LOWENBERG M H, KYLE H L. Development of a pendulum support rig dynamic wind tunnel apparatus[R]. AIAA 2002-4879, 2002.
    [2]
    DAVISON P M, LOWENBERG M H, BERNARDO M D. Modelling non-linear behavior in a single degree-of-freedom dynamic wind tunnel rig[R]. AIAA 2003-5314, 2003.
    [3]
    RICHARDSON T S, DUBS A, LOWENBERG M H, et al. Wind-tunnel testing of a dynamic state-feedback gain scheduled control system[R]. AIAA 2005-5976, 2005.
    [4]
    GATTO A, LOWENBERG M H. Evaluation of a three degree of freedom test rig for stability derivative estimation[J]. Journal of Aircraft, 2006, 43(6): 1747-1762. doi: 10.2514/1.19821
    [5]
    PATTINSON J, LOWENBERG M H, GOMAN M G. A multi-degree-of-freedom rig for the wind tunnel determination of dynamic data[R]. AIAA 2009-5727, 2009.
    [6]
    MAGILL J C, CATALDI P, MORENCY J R, et al. Demon-stration of a wire suspension system for dynamic wind tunnel testing[R]. AIAA 2004-1296, 2004.
    [7]
    BERGMANN A, HUEBNER A, LOESER T. Experimental and numerical research on the aerodynamics of unsteady moving aircraft[J]. Progress in Aerospace Sciences, 2007, 44(2): 121-137. http://cn.bing.com/academic/profile?id=275024735e837ece9b05e2aa83089fdf&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    CARNDUFF S D, ERBSLOEH S D, COOKE A K, et al. Development of a low cost dynamic wind tunnel facility utilizing MEMS inertial sensors[R]. AIAA 2008-196, 2008.
    [9]
    STENFELT G, RINGERTZ U. Yaw control of a tailless air-craft configuration[J]. Journal of Aircraft, 2010, 47(5): 1807-1810. doi: 10.2514/1.C031017
    [10]
    胡静, 李潜.风洞虚拟飞行试验技术初步研究[J].实验流体力学, 2010, 24(1): 95-99. doi: 10.3969/j.issn.1672-9897.2010.01.018

    HU J, LI Q. Primary investigation of the virtual flight testing techniques in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 95-99. doi: 10.3969/j.issn.1672-9897.2010.01.018
    [11]
    赵忠良, 吴军强, 李浩, 等. 2.4 m跨声速风洞虚拟飞行试验技术研究[J].航空学报, 2016, 37(2): 504-512. http://d.old.wanfangdata.com.cn/Periodical/hkxb201602014
    [12]
    李浩, 赵忠良, 范召林.风洞虚拟飞行试验模拟方法研究[J].实验流体力学, 2011, 25(6): 72-76. doi: 10.3969/j.issn.1672-9897.2011.06.014

    LI H, ZHAO Z L, FAN Z L. Simulation method for wind tunnel based virtual flight testing[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 72-76. doi: 10.3969/j.issn.1672-9897.2011.06.014
    [13]
    赵忠良, 吴军强, 李浩, 等.高机动导弹气动/运动/控制耦合的风洞虚拟飞行试验技术[J].空气动力学学报, 2016, 34(1): 14-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201601005

    ZHAO Z L, WU J Q, LI H, et al. Wind tunnel based virtual flight testing of aerodynamics, flight dynamics and flight control for high maneuver missile[J]. Acta Aerodynamica Sinica, 2016, 34(1): 14-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201601005
    [14]
    郭林亮, 祝明红, 孔鹏, 等.风洞虚拟飞行模型机与原型机动力学特性分析[J].航空学报, 2016, 37(8): 2583-2593. http://d.old.wanfangdata.com.cn/Periodical/hkxb201608025

    GUO L L, ZHU M H, KONG P, et al. Analysis of dynamic characteristics between prototype aircraft and scaled-model of virtual flight test wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2583-2593. http://d.old.wanfangdata.com.cn/Periodical/hkxb201608025
    [15]
    GUO L L, ZHU M H, FU H, et al. Modeling and simulation for a low speed wind tunnel virtual flight test rig[J]. Acta Aerodynamica Sinica, 2017, 35(5): 708-717. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201705016
    [16]
    吕光男.风洞虚拟飞行试验中的飞行力学与控制问题研究[D].南京: 南京航空航天大学, 2009.

    LYU G N. Research on a flight dynamics and control in wind tunnel based virtual flight test[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
    [17]
    张蓓蕾.基于RTX的风洞虚拟飞行试验数据采集与控制系统研究[D].南京: 南京航空航天大学, 2011.

    ZHANG B L. Research on data acquisition and control system of RTX for wind tunnel based virtual flight testing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
    [18]
    陈孟钢, 高金源.缩比模型飞机及其飞控系统与原型机的相似关系[J].飞行力学, 2003, 21(2): 34-37. doi: 10.3969/j.issn.1002-0853.2003.02.010

    CHENG M G, GAO J Y. Similarityrelationships between scaled-model aircraft with its flight control system and prototype aircraft[J]. Flight Dynamics, 2003, 21(2): 34-37. doi: 10.3969/j.issn.1002-0853.2003.02.010
    [19]
    黄敏, 王中伟, 郭振云.评估飞控系统的风洞虚拟飞行试验系统与关键技术[J].国防科技大学学报, 2017, 39(2): 1-8. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201702001

    HUANG M, WANG Z W, GUO Z Y. Wind tunnel based virtual flight testing system and key technologies for the evaluation of flight control system[J]. Journal of National University of Defense Technology, 2017, 39(2): 1-8. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201702001
    [20]
    梁彬, 张石玉, 赵俊波, 等.航空飞行器多自由度控制响应风洞试验技术研究[C]//第六届近代实验空气动力学会议论文集. 2017.

    LIANG B, ZHANG S Y, ZHAO J B, et al. Research on wind tunnel test technique of multi-degree of freedom control response for aviation aircraft[C]//Proc of the Sixth Modern Experimental Aerodynamics Conference. 2017.
    [21]
    GILBERT W P, NGUYEN L T, VANGUNST R W. Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane[R]. NASA TN-D-8176, 1976.
    [22]
    祝立国, 王永丰, 庄逢甘, 等.高速高机动飞行器的横航向偏离预测判据分析[J].宇航学报, 2007, 28(6): 1550-1553. doi: 10.3321/j.issn:1000-1328.2007.06.022

    ZHU L G, WANG Y F, ZHUANG F G, et al. The lateral-directional departure criteria analysis of high-speed and high maneuverability aircraft[J]. Journal of Astronautics, 2007, 28(6): 1550-1553. doi: 10.3321/j.issn:1000-1328.2007.06.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (546) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return