Wang Guolin, Zhou Yinjia, Jin Hua, et al. Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 13-19. doi: 10.11729/syltlx20180159
Citation: Wang Guolin, Zhou Yinjia, Jin Hua, et al. Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 13-19. doi: 10.11729/syltlx20180159

Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis

doi: 10.11729/syltlx20180159
  • Received Date: 2018-10-29
  • Rev Recd Date: 2018-12-27
  • Publish Date: 2019-06-25
  • In view of the high-temperature gas effect in the hypersonic flight, the wall catalytic reaction can significantly increase the aerodynamic thermal load. For the analysis and prediction of the aerodynamic thermal environment and structural thermal response, the influence of the catalytic reaction should be fully considered. In this paper, the simplified atomic recombination catalytic model and the finite-rate catalytic reaction model are embedded in the ultra-high-speed-flow heat-transfer coupling analysis model to establish a ultra-high-speed flow/catalytic reaction/heat transfer multi-field coupling analysis model. Among them, the surface catalytic coefficient of the ZrB2-SiC ultra-high temperature ceramic material is obtained as a function of the temperature through the catalytic experiment of the high-frequency plasma wind tunnel. The coupled calculation and the uncoupled calculation, and the simplified atomic recombination catalytic model and the finite-rate catalytic reaction model are compared. It is found that the total heat flow of the wall depends on the surface catalytic properties of the material. For the thermal response of materials with higher thermal conductivity, the coupled heat transfer analysis can effectively avoid the uncoupled calculation zone. The finite-rate catalytic reaction model can improve the calculation accuracy to avoid over-estimation. On this basis, the intrinsic relationship between the catalytic reaction and the wall heat transfer is revealed by the coupled heat transfer analysis. It is proved that the surface catalytic effect should be considered in the heat transfer analysis to improve the thermal response accuracy of the structure to promote the design capabilities of the thermal protection system.
  • loading
  • [1]
    Chen Y K, Henline W D, Tauber M E. Mars pathfinder trajectory based heating and ablation calculations[J]. Journal of Spacecraft and Rockets, 1995, 32(2):225-230. doi: 10.2514/3.26600
    [2]
    Adam J C. Coupled fluid-thermal-structural modeling and analysis of hypersonic flight vehicle structures[D]. Columbus: Ohio State University, 2010.
    [3]
    Olynick D R, Henline W D. Navier-Stokes heating calculations for benchmark thermal protection system sizing[J]. Journal of Spacecraft and Rockets, 1996, 33(6):807-814. doi: 10.2514/3.26842
    [4]
    Calvo J, Mack A, Bozic O. Study of the heating of a hypersonic projectile through a multidisciplinary simulation[C]//Proc of European Conference on Computational Fluid Dynamics. 2006.
    [5]
    Molvik G A, Milos F S, Chen Y K, et al. Computation of high speed flow fields with multidimensional heat conduction[R]. AIAA-1995-2116, 1995.
    [6]
    Yamamoto Y, Yoshioka M. CFD and FEM coupling analysis of OREX aerothermodynamic flight data[R]. AIAA-1995-2087, 1995.
    [7]
    Thornton E A, Dechaumphai P. Coupled flow, thermal, and structural analysis of aerodynamically heated panels[J]. Journal of Aircraft, 1988, 25(11):1052-1059. doi: 10.2514/3.45702
    [8]
    桂业伟, 袁湘江.类前缘防热层流场与热响应耦合计算研究[J].工程热物理学报, 2002, 23(6):733-735. doi: 10.3321/j.issn:0253-231X.2002.06.022

    Gui Y W, Yuan X J. Numerical simulation on the coupling phenomena of aerodynamic heating with thermal response in the region of the leading edge[J]. Journal of Engineering Thermophysics, 2002, 23(6):733-735. doi: 10.3321/j.issn:0253-231X.2002.06.022
    [9]
    张兵, 韩景龙.多场耦合计算平台与高超声速热防护结构传热问题研究[J].航空学报, 2011, 32(3):400-409. http://d.old.wanfangdata.com.cn/Periodical/hkxb201103003

    Zhang B, Han J L. Multi-field coupled computing platform and thermal transfer of hypersonic thermal protectionstrucutres[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3):400-409. http://d.old.wanfangdata.com.cn/Periodical/hkxb201103003
    [10]
    Zhang S T, Chen F, Liu H. Interated of fluid-thermal-structural analysis for predicting aerothermal environment of hypersonic vehicles[R]. AIAA-2014-1394, 2014.
    [11]
    孟松鹤, 金华, 王国林, 等.热防护材料表面催化特性研究进展[J].航空学报, 2014, 35(2):287-302. http://d.old.wanfangdata.com.cn/Periodical/hkxb201402001

    Meng S H, Jin H, Wang G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):287-302. http://d.old.wanfangdata.com.cn/Periodical/hkxb201402001
    [12]
    Paterna D, Monti R, Savino R, et al. Experimental and numerical investigation of martian atmosphere entry[J]. Journal of Thermophysics and Heat Transfer, 2002, 39(2):227-236. http://cn.bing.com/academic/profile?id=ca0050fa6402209d0d4a2b4e4e313f28&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    Wright M, Loomis M, Papadopoulos P. Aerothermal analysis of the project fire Ⅱ afterbody flow[J]. AIAA-2001-3065, 2001.
    [14]
    杨肖峰, 唐伟, 桂业伟. MSL火星探测器高超声速流场预测及气动性分析[J].宇航学报, 2015, 36(4):383-389. doi: 10.3873/j.issn.1000-1328.2015.04.003

    Yang X F, Tang W, Gui Y W. Hypersonic flow field prediction and aerodynamics analysis for MSL entry capsule[J]. Journal of Astronautics, 2015, 36(4):383-389. doi: 10.3873/j.issn.1000-1328.2015.04.003
    [15]
    刘宗庆, 董维中, 丁明松, 等.火星探测器气动热环境和其动力特性的数值模拟研究[J].空气动力学学报, 2018, 36(4):642-650. doi: 10.7638/kqdlxxb-2016.0053

    Liu Q Z, Dong W Z, Ding M S, et al. Numerical simulation of aerothermal environments and aerodynamic characteristics of Mars entry capsules[J]. Acta Aerodynamics Sinica, 2018, 36(4):642-650. doi: 10.7638/kqdlxxb-2016.0053
    [16]
    Voinov L, Zalogin G N, Lunev V V, et al. Comparative analysis of laboratory and full-scale data on the catalycity of the heat shield for the Bor and Buran orbital vehicles[J]. Cosmonautics and Rocket Production, 1994, 2:51-57.
    [17]
    董维中, 乐嘉陵, 刘伟雄.驻点壁面催化速率常数确定的研究[J].流体力学实验与测量, 2000, 14(3):1-6. doi: 10.3969/j.issn.1672-9897.2000.03.001

    Dong W Z, Le J L, Liu W X. The determination of catalyticreate constant of surface materials of testing model in the shock tube[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):1-6. doi: 10.3969/j.issn.1672-9897.2000.03.001
    [18]
    苗文博, 程晓丽, 艾邦成.壁面催化条件对热环境预测的影响[J].航天器环境工程, 2009, 26(增刊):45-49. http://d.old.wanfangdata.com.cn/Periodical/htqhjgc2009z1013

    Miao W B, Cheng X L, Ai B C. The influence of catalyze condition on the thermal environment predicting[J]. Spacecraft Environment Engineering, 2009, 26(S):45-49. http://d.old.wanfangdata.com.cn/Periodical/htqhjgc2009z1013
    [19]
    苗文博, 程晓丽, 艾邦成, 等.高超声速流动壁面催化复合气动加热特性[J].宇航学报, 2013, 34(3):442-446. doi: 10.3873/j.issn.1000-1328.2013.03.021

    Miao W B, Cheng X L, Ai B C, et al. Surface catalysis recombination aero heating characteristics of hypersonic flow[J]. Journal of Astronautics, 2013, 34(3):442-446. doi: 10.3873/j.issn.1000-1328.2013.03.021
    [20]
    李海燕, 石安华, 马平, 等.高超声速非平衡流研究进展[C]//中国力学大会论文集. 2017.

    Li H Y, Shi A H, Ma P, et al, Recent advances in hypersonic non-equilibrium flows[C]//Proc of the Chinese Congress of Theoretical and Applied Mechanics. 2017.
    [21]
    Inger G R, Gnoffo P A. Hypersonic entry heating with discontinuous surfacecatalycity-A combined analytic/CFD approach[R]. AIAA-1996-2150, 1996.
    [22]
    Prabhu D K, Venkatapathy E, Kontinos D A, et al. X-33 catalytic heating[R]. AIAA-1998-2844, 1998.
    [23]
    Scott C D, Derry S M. Catalytic recombination and space shuttle heating[R]. AIAA-1982-0841, 1982.
    [24]
    Ranuzzi G, Grass F, Bisceglia S. Effects of the surface catalysis on high-enthalpy shock- wave/turbulent boundary-layer interactions[R]. AIAA-2005-3219, 2005.
    [25]
    Viviani A, Pezzella G. Influence of surface catalyticity on reentry aerothermodynamics and heat shield[R]. AIAA-2007-4047, 2007.
    [26]
    Grumet A A, Anderson J D. The effects of surface catalysis on the hypersonic shock wave/boundary layer interaction[R]. AIAA-1994-2073, 1994.
    [27]
    Mizoguchi M, Iwata N, Hayashi K, et al. Reduction of aerodynamic heating with wall catalysis by film cooling[R]. AIAA-2006-8068, 2006.
    [28]
    Shirouzu M, Inouye Y, Watanabe S, et al. Overview of aero and aerothermodynamic researches on HOPE-X and related activities in Japan[R]. AIAA-2004-2426, 2004.
    [29]
    Peigin S, Kazak V. 3D Thermochemical nonequilibrium viscous gas flow over blunt bodies with catalytic surface at attack and slip angles[R]. AIAA-99-3628, 1999.
    [30]
    董维中, 高铁锁, 丁明松, 等.高超声速飞行器表面温度分布与气动热耦合数值研究[J].航空学报, 2016, 36(25):311-324. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501025

    Dong W Z, Gao T S, Ding M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2016, 36(25):311-324. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501025
    [31]
    Laux T, Feigl M, Stöckle T, et al. Estimation of the surface catalyticity of PVD coatings by simultaneous heat flux and LIF measurements in high enthalpy air flows[R]. AIAA-2000-2364, 2000.
    [32]
    Kurotaki T. Catalytic Model on SiO2-based surface and application to real trajectory[J]. Journal of Spacecraft and Rockets, 2001, 38(5):798-800. doi: 10.2514/2.3749
    [33]
    周印佳, 孟松鹤, 解维华, 等.高超声速飞行器热环境与结构传热的多场耦合数值研究[J].航空学报, 2016, 37(9):2739-2748. http://d.old.wanfangdata.com.cn/Periodical/hkxb201609012

    Zhou Y J, Meng S H, Xie W H, et al. Multi-field coupling numerical analysis of aerothermal environment and structureal heat transfer of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2739-2748. http://d.old.wanfangdata.com.cn/Periodical/hkxb201609012
    [34]
    刘丽萍, 王国林, 王一光, 等.高焓化学非平衡流条件下防热材料表面催化特性的试验方法[J].航空学报, 2017, 38(10):121317-1-9. http://d.old.wanfangdata.com.cn/Periodical/hkxb201710010

    Liu L P, Wang G L, Wang Y G, et al. Test methods for determining surface catalytic properties of thermal protection materials in high enthalpy chemical non-equilibrium flows[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121317-1-9. http://d.old.wanfangdata.com.cn/Periodical/hkxb201710010
    [35]
    刘丽萍, 王国林, 王一光, 等.高焓化学非平衡流条件下C/SiC复合材料的催化性能[J].航空学报, 2018, 39(5):621696-1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201805021

    Liu L P, Wang G L, Wang Y G, et al. Catalytic performance of C/SiC composites in high enthalpy chemical non-equilibrium flow[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):621696-1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201805021
    [36]
    Anderson J D. Hypersonic and high temperature gas dynamics[M]. New York:McGraw-Hill, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (227) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return