Dong Hao, Liu Shicheng, Cheng Keming. Review of hypersonic boundary layer transition induced by roughness elements[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 1-15. doi: 10.11729/syltlx20180167
Citation: Dong Hao, Liu Shicheng, Cheng Keming. Review of hypersonic boundary layer transition induced by roughness elements[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 1-15. doi: 10.11729/syltlx20180167

Review of hypersonic boundary layer transition induced by roughness elements

doi: 10.11729/syltlx20180167
  • Received Date: 2018-10-30
  • Rev Recd Date: 2018-12-14
  • Publish Date: 2018-12-25
  • Hypersonic boundary layer transition plays an important role in aerodynamic design of hypersonic vehicles. Transition control is always one of the main purposes of the transition research. In the hypersonic flow, the roughness element is used to control the boundary layer transition. Firstly, this paper reviews the latest researches in hypersonic boundary layer transition control by various types of roughness elements in recent years. Then, from the perspective of the receptivity of the roughness elements to the hypersonic boundary layer and the crossflow stability, the role of the roughness element in the study of the hypersonic boundary layer transition mechanism is introduced based on the effect of the roughness element on hypersonic boundary layer transition. The application of the oil film interferometry technique in the study of hypersonic boundary layer transition induced by roughness elements in the hypersonic wind tunnel of Nanjing University of Aeronautics and Astronautics (NHW) is also briefly introduced. Finally, the existing problems in hypersonic boundary layer transition are discussed, and the future research trend is also prospected.
  • loading
  • [1]
    解少飞, 杨武兵, 沈清.高超声速转捩机理及应用的若干进展回顾[J].航空学报, 2015, 36(3):714-723. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201503002

    Xie S F, Yang W B, Shen Q. Review of progresses in hypersonic boundary layer transition mechanism and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):714-723. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201503002
    [2]
    Maslov A A, Shipyluk A N, Bountin D A, et al. Mach 6 boundary-layer stability experiments on sharp and blunt cones[J]. Journal of Spacecraft and Rockets, 2006, 43(1):71-76. doi: 10.2514/1.15246
    [3]
    Schneider S P. Effects of roughness on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2008, 45(2):193-209. doi: 10.2514/1.29713
    [4]
    Schneider S P. Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1090-1105. doi: 10.2514/1.37431
    [5]
    Reda D C. Review and synthesis of roughness-dominated transition correlations for reentry applications[J]. Journal of Spacecraft and Rockets, 2002, 39(2):161-167. doi: 10.2514/2.3803
    [6]
    Iyer P S, Mahesh K. High-speed boundary-layer transition induced by discrete roughness element[J]. Journal of Fluids Mechanics, 2013, 729:524-562. doi: 10.1017/jfm.2013.311
    [7]
    罗纪生.高超声速边界层的转捩及预测[J].航空学报, 2015, 36(1):357-372. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501028

    Luo J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501028
    [8]
    陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030

    Chen J Q, Tu G H, Zhang Y F, et al. Hypersonic boundary layer transition:what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030
    [9]
    Whitehead A H Jr. NASP aerodynamics[C]//Proc of the 1st National Aerospace Plane Conference. 1989.
    [10]
    Berry S A, Horvath T J, Hollis B R, et al. X-33 hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2001, 38(5):646-657. doi: 10.2514/2.3750
    [11]
    Berry S A, Difulvio M, Kowalkowski M K. Forced boundary-layer transition on X-43(Hyper-X) in NASA LaRC 20-inch Mach 6 air tunnel[R]. NASA/TM-2000-210316.
    [12]
    Berry S A, Daryabeigi K, Wurster K, et al. Boundary-layer transition on X-43A[J]. Journal of Spacecraft and Rockets, 2010, 47(6):922-934. doi: 10.2514/1.45889
    [13]
    Borg M P. Laminar instability and transition on the X-51A[D]. West Lafayette, Indiana: Purdue University, 2009.
    [14]
    赵慧勇, 易淼荣.高超声速进气道强制转捩装置设计综述[J].空气动力学学报, 2014, 32(5):623-627. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201405009

    Zhao H Y, Yi M R. Review of design for forced-transition trip of hypersonic inlet[J]. Acta Aerodynamica Sinica, 2014, 32(5):623-627. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201405009
    [15]
    Fujii K. Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2006, 43(4):731-738. doi: 10.2514/1.17860
    [16]
    Tirtey S C, Chazot O, Walpot L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011, 50(2):407-418. doi: 10.1007/s00348-010-0939-4
    [17]
    Reda D C, Wilder M C, Prabhu D K. Transition experiments on blunt bodies with isolated roughness elements in hypersonic flight[J]. Journal of Spacecraft and Rockets, 2010, 47(5):828-835. doi: 10.2514/1.49112
    [18]
    Wheaton B M, Schneider S P. Hypersonic boundary-layer instabilities due to near-critical roughness[J]. Journal of Spacecraft and Rockets, 2014, 51(1):327-342. doi: 10.2514/1.A32554
    [19]
    Fiala A, Hillier R, Estruch-Samper D. Roughness-induced turbulent wedges in a hypersonic blunt-body boundary layer[J]. Journal of Fluid Mechanics, 2014, 754(9):208-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM754FLMFLM754S0022112014003887h.xml
    [20]
    Bernardini M, Pirozzoli S, Orlandi P, et al. Parameterization of boundary-layer transition induced by isolated roughness elements[J]. AIAA Journal, 2014, 52(10):2261-2269. doi: 10.2514/1.J052842
    [21]
    Borg M P, Schneider S P. Effect of freestream noise on roughness-induced transition for the X-51A forebody[J]. Journal of Spacecrafts and Rockets, 2008, 45(6):1106-1116. doi: 10.2514/1.38005
    [22]
    van Driest E R, McCauley W D. The effect of controlled three-dimensional roughness on boundary-layer transition at supersonic speeds[J]. Journal of the Aeronautical Sciences, 1960, 27(4):261-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=k0MKVxSMVJipaOihOV6oHTpEfE6tJMHMy3VKHNoh/h8=
    [23]
    Wheaton B M, Bartkowicz M D, Subbareddy P K, et al. Roughness-induced instabilities at Mach 6: a combined numerical and experimental study[C]//Proc of the 41st AIAA Fluid Dynamics Conference and Exhibit. 2011.
    [24]
    Zhou Y L, Zhao Y F, Xu D, et al. Numerical investigation of hypersonic flat-plate boundary layer transition mechanism induced by different roughness shapes[J]. Acta Astronautica, 2016, 127:209-218. doi: 10.1016/j.actaastro.2016.05.027
    [25]
    朱德华, 袁湘江, 杨武兵.粗糙元诱导的高超声速转捩机理及应用[J].航空学报, 2018, 39(1):68-77. http://d.old.wanfangdata.com.cn/Periodical/hkxb201801005

    Zhu D H, Yuan X J, Yang W B. Mechanism of hypersonic transition induced by a roughness element and its application[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):68-77. http://d.old.wanfangdata.com.cn/Periodical/hkxb201801005
    [26]
    Whitehead A H Jr. Flow-field and drag characteristics of several boundary-layer tripping elements in hypersonic flow[R]. NASA TN D-5454, 1969.
    [27]
    Duan Z W, Xiao Z X. Direct numerical simulation of geometrical parameter effects on the hypersonic ramp-induced transition[C]//Proc of the 7th AIAA Theoretical Fluid Mechanics Conference. 2014.
    [28]
    Duan Z W, Xiao Z X, Song F. Direct numerical simulation of hypersonic transition induced by an isolated cylindrical roughness element[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(12):2330-2345. doi: 10.1007/s11433-014-5556-4
    [29]
    Subbareddy P K, Bartkowicz M D, Candler G V. Direct numerical simulation of high-speed transition due to an isolated roughness element[J]. Journal of Fluid Mechanics, 2014, 748(3):848-878. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM748FLMFLM748S0022112014002043h.xml
    [30]
    Danehy P M, Bathel B, Ivey C, et al. NO PLIF study of hypersonic transition over a discrete hemispherical roughness element[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2009.
    [31]
    Wheaton B M, Schneider S P. Roughness-induced instability in a hypersonic laminar boundary layer[J]. AIAA Journal, 2012, 50(6):1245-1256. doi: 10.2514/1.J051199
    [32]
    Ye Q Q, Schrijer F, Scarano F. Tomographic PIV measurement of hypersonic boundary layer transition past a micro-ramp[C]//Proc of the 47th AIAA Fluid Dynamics Conference. 2017.
    [33]
    Tang Q, Zhu Y D, Chen X, et al. Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness[J]. Physics of Fluid, 2015, 27(6):064105. doi: 10.1063/1.4922389
    [34]
    Zhao X H, Zhang Q H. Experimental and numerical study of coherent structures in a roughness induced transition boundary layer at Mach 5[J]. Physics of Fluid, 2018, 30:104102. doi: 10.1063/1.5047258
    [35]
    Jackson A P, Hillier R, Soltani S. Experimental and computational study of laminar cavity flows at hypersonic speeds[J]. Journal of Fluid Mechanics, 2001, 427:329-358. doi: 10.1017/S0022112000002433
    [36]
    Lawson S J, Barakos G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Science, 2011, 47(3):186-216. doi: 10.1016/j.paerosci.2010.11.002
    [37]
    Palmer G E, Alter S, Everhart J, et al. CFD validation for short and long cavity flow simulations[C]//Proc of the 39th AIAA Thermophysics Conference. 2007.
    [38]
    Ohmichi Y, Suzuki K. Study on hypersonic flow over flat plate with channels[C]//Proc of the 29th AIAA Applied Aerodynamics Conference. 2011.
    [39]
    Chang C L, Choudhari M M, Li F, et al. Effects of cavities and protuberances on transition over hypersonic vehicles[C]//Proc of the 41st AIAA Fluid Dynamics Conference and Exhibit. 2011.
    [40]
    Xiao L, Xiao Z, Duan Z, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150. doi: 10.1016/j.ijheatfluidflow.2014.10.007
    [41]
    Federov A V, Malmuth N D, Rasheed A, et al. Stabilization of hypersonic boundary layers by porous coatings[J]. AIAA Journal, 2001, 39(4):605-610. doi: 10.2514/2.1382
    [42]
    Fedorov A, Shiplyuk A, Maslov A, et al. Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating[J]. Journal of Fluid Mechanics, 2003, 479:99-124. doi: 10.1017/S0022112002003440
    [43]
    Fedorov A, Kozlov V, Shiplyuk A, et al. Stability of hypersonic boundary layer on porous wall with regular microstructure[J]. AIAA Journal, 2006, 44(8):1866-1871. doi: 10.2514/1.21013
    [44]
    Fedorov A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43(1):79-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c2ca832ca33f26c09114620f4202345
    [45]
    Wagner A, Kuhn M, Schramm J M, et al. Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon-carbon material with random microstructure[J]. Experiments in Fluids, 2013, 54:1606. doi: 10.1007/s00348-013-1606-3
    [46]
    Wagner A, Hannemann K, Wartemann V, et al. Hypersonic boundary-layer stabilization by means of ultrasonically absorptive carbon-carbon material, part 1: experimental results[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013.
    [47]
    Willems S, Gulhan A. Damping of the second mode instability on a cone in hypersonic flow[C]//Proc of the 7th European Symposium on Aerothermodynamics. 2011.
    [48]
    Wartemann V, Lüdeke H, Sandham N D. Numerical investigation of hypersonic boundary-layer stabilization by porous surfaces[J]. AIAA Journal, 2012, 50(6):1281-1290. doi: 10.2514/1.J051355
    [49]
    Lukashevich S V, Morozov S O, Shiplyuk A N. Experimental study of the effect of a passive porous coating on disturbances in a hypersonic boundary layer 2. Effect of the porous coating location[J]. Journal of Applied Mechanics and Technical Physics, 2016, 57(5):873-878. doi: 10.1134/S002189441605014X
    [50]
    Wang X W, Zhong X L. The stabilization of a hypersonic boundary layer using local section of porous coating[J]. Physics of Fluids, 2012, 24(3):034105. doi: 10.1063/1.3694808
    [51]
    Zhao R, Liu T, Wen C Y, et al. Theoretical modeling and optimization of porous coating for hypersonic laminar flow control[J]. AIAA Journal, 2018, 56(8):2942-2946. doi: 10.2514/1.J057272
    [52]
    Reda D C, Wilder M C, Bogdanoff D W, et al. Transition experiments on blunt bodies with distributed roughness in hypersonic free flight[J]. Journal of Spacecraft and Rockets, 2008, 45(2):210-215. doi: 10.2514/1.30288
    [53]
    Reda D C, Wilder M C, Prabhu D K. Transition experiments on slightly blunted cones with distributed roughness in hypersonic flight[J]. AIAA Journal, 2012, 50(10):2248-2254. doi: 10.2514/1.J051616
    [54]
    Reda D C, Wilder M C, Prabhu D K. Transition experiments on blunt cones with distributed roughness in hypersonic flight[J]. Journal of Spacecraft and Rockets, 2013, 50(3):504-508. doi: 10.2514/1.A32426
    [55]
    Wilder M C, Reda D C, Prabhu D K. Effects of distributed surface roughness on turbulent heat transfer augmentation measured in hypersonic free flight[C]//Proc of the 52nd AIAA Aerospace Sciences Meeting. 2014.
    [56]
    Wilder M C, Reda D C, Prabhu D K. Transition experiments on blunt bodies with distributed roughness in hypersonic free flight in carbon dioxide[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015.
    [57]
    Irimpan K J, Menezes V, Srinivasan K, et al. Nose-tip transition control by surface roughness on a hypersonic sphere[J]. Journal of Flow Control, Measurement & Visualization, 2018, 6:125-135. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=85742
    [58]
    Giovanni A D, Stemmer C. Cross-flow-type breakdown induced by distributed roughness in the boundary layer of a hypersonic capsule configuration[J]. Journal of Fluid Mechanics, 2018, 856:470-503. doi: 10.1017/jfm.2018.706
    [59]
    张存波, 罗纪生, 高军.分布式粗糙度对马赫数为4.5的平板边界层稳定性的影响[J].航空动力学报, 2016, 31(5):1234-1241. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201605027

    Zhang C B, Luo J S, Gao J. Effect of distributed roughness on Mach 4.5 boundary-layer transition[J]. Journal of Aerospace Power, 2016, 31(5):1234-1241. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201605027
    [60]
    江贤洋, 李存标.高超声速边界层感受性研究综述[J].实验流体力学, 2017, 31(2):1-11. http://www.syltlx.com/CN/abstract/abstract11004.shtml

    Jiang X Y, Li C B. Review of research on the receptivity of hypersonic boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2):1-11. http://www.syltlx.com/CN/abstract/abstract11004.shtml
    [61]
    Mack L M. Boundary-layer linear stability theory[R]. AGARD Report 709: Special Course on Stability and Transition of Laminar Flow, 1984.
    [62]
    Fedorov A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43:79-95. doi: 10.1146/annurev-fluid-122109-160750
    [63]
    Morkovin M V. Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies[R]. AFFDL-TR-68-149, 1969.
    [64]
    周恒, 苏彩虹, 张永明.超声速/高超声速边界层的转捩机理及预测[M].北京:科学出版社, 2015.

    Zhou H, Su C H, Zhang Y M. Transition mechanism and predication of supersonic/hypersonic boundary layer[M]. Beijing:Science Press, 2015.
    [65]
    Morkovin M V. On the many faces of transition[M]//Well C S. Viscous drag reduction. New York: Plenum Press, 1969: 1-31.
    [66]
    Saric W S, Reed H L, Kerschen E J. Boundary-layer receptivity to freestream disturbances[J]. Annu Review of Fluid Mechanics, 2002, 34:291-391. doi: 10.1146/annurev.fluid.34.082701.161921
    [67]
    Fedorov A V, Khokhlov A P. Receptivity of hypersonic boundary layer to wall disturbances[J]. Theoretical and Computational Fluid Dynamics, 2002, 15(4):231-254. doi: 10.1007/s001620100052
    [68]
    Zhong X L, Wang X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44:527-561. doi: 10.1146/annurev-fluid-120710-101208
    [69]
    Kuester M S, White E B. Roughness receptivity and shielding in a flat plate boundary layer[J]. Journal of Fluid Mechanics, 2015, 777:430-460. doi: 10.1017/jfm.2015.267
    [70]
    Balakumar P. Boundary layer receptivity due to roughness and freestream sound for supersonic flows over axisymmetric cones[C]//Proc of the 38th Fluid Dynamics Conference and Exhibit. 2008.
    [71]
    Iyer P S, Muppidi S, Mahesh K. Roughness-induced transition in high speed flows[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011.
    [72]
    Wang X W, Zhong X L. Receptivity of a hypersonic flat-plate boundary layer to three-dimensional surface roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1165-1175. doi: 10.2514/1.37766
    [73]
    Mistry V I, Page G J, McGuirk J J. Simulation of receptivity and induced transition from discrete roughness elements[J]. Flow, Turbulence and Combustion, 2015, 95(2-3):301-334. doi: 10.1007/s10494-015-9636-y
    [74]
    Tang Q, Zhu Y D, Chen X, et al. Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness[J]. Physics of Fluids, 2015, 27(6):064105. doi: 10.1063/1.4922389
    [75]
    Qin F F, Wu X S. Response and receptivity of the hypersonic boundary layer past a wedge to free-stream acoustic, vertical and entropy disturbances[J]. Journal of Fluid Mechanics, 2016, 797:874-915. doi: 10.1017/jfm.2016.287
    [76]
    Tempelmann D, Schrader L U, Hanifi A, et al. Swept wing boundary-layer receptivity to localized surface roughness[J]. Journal of Fluid Mechanics, 2012, 717:516-544. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c27081df7e589a304bd5450a1e7ade07
    [77]
    Fedorov A V, Tumin A. Initial-value problem for hypersonic boundary-layer flows[J]. AIAA Journal, 2003, 41(3):379-389. doi: 10.2514/2.1988
    [78]
    刘向宏, 赖光伟, 吴杰.高超声速边界层转捩实验综述[J].空气动力学学报, 2018, 36(2):196-211. doi: 10.7638/kqdlxxb-2018.0017

    Liu X H, Lai G W, Wu J. Boundary-layer transition experiments in hypersonic flows[J]. Acta Aerodynamica Sinica, 2018, 36(2):196-211. doi: 10.7638/kqdlxxb-2018.0017
    [79]
    Maslov A A, Shiplyuk A N, Sidorenko A A, et al. Leading-edge receptivity of a hypersonic boundary layer on a flat plate[J]. Journal of Fluid Mechanics, 2001, 426:73-94. doi: 10.1017/S0022112000002147
    [80]
    Lee C B, Chen S Y. A review of recent progress in the study of transition in hypersonic boundary layer[J]. National Science Review, 2018, 52:4993540. doi: 10.1093/nsr/nwy052
    [81]
    Wang X W, Zhong X L. Receptivity of a hypersonic flat-plate boundary layer to three-dimensional surface roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1165-1175. doi: 10.2514/1.37766
    [82]
    Fong K D, Wang X W, Zhong X L. Numerical simulation of roughness effect on the stability of a hypersonic boundary layer[J]. Computers & Fluids, 2014, 96:350-367. http://www.sciencedirect.com/science/article/pii/S0045793014000164
    [83]
    Duan L, Wang X W, Zhong X L. A high-order cut-cell method for numerical simulation of hypersonic boundary-layer instability with surface roughness[J]. Journal of Computational Physics, 2010, 229(19):7207-7237. doi: 10.1016/j.jcp.2010.06.008
    [84]
    Duan L, Wang X W, Zhong X L. Stabilization of a Mach 5.92 boundary layer by two-dimensional finite-height roughness[J]. AIAA Journal, 2013, 51(1):266-270. doi: 10.2514/1.J051643
    [85]
    Duan L, Zhong X L. A high-order cut-cell method for numerical simulation of three-dimensional hypersonic boundary-layer transition with finite surface roughness[C]//Proc of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2010.
    [86]
    Balakumar P. Receptivity of hypersonic boundary layers to distributed roughness and acoustic disturbances[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013.
    [87]
    Fong K D, Wang X W, Huang Y, et al. Second mode suppression in hypersonic boundary layer by roughness:design and experiments[J]. AIAA Journal, 2015, 53(10):3138-3143. doi: 10.2514/1.J054100
    [88]
    Moyes A J, Kocian T S, Mullen D, et al. Effects of initial disturbance amplitude on hypersonic crossflow instability[C]//Proc of AIAA Aerospace Sciences Meeting. 2018.
    [89]
    Reed H L, Perez E, Kuehl J, et al. Verification and validation issues in hypersonic stability and transition prediction[J]. Journal of Spacecraft and Rockets, 2015, 52(1):29-37. doi: 10.2514/1.A32825
    [90]
    Bippes H. Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability[J]. Progress of Aerospace Science, 1999, 35(4):363-412. doi: 10.1016/S0376-0421(99)00002-0
    [91]
    Malik M R, Li F, Chang C L. Crossflow disturbances in three-dimensional boundary layers:nonlinear development, wave interaction and secondary instability[J]. Journal of Fluid Mechanics, 1994, 268:1-36. doi: 10.1017/S0022112094001242
    [92]
    Malik M R, Li F, Choudhari M M, et al. Secondary instability of crossflow vortices and swept-wing boundary-layer transition[J]. Journal of Fluid Mechanics, 1999, 399:85-115. doi: 10.1017/S0022112099006291
    [93]
    Chernoray V G, Dovgal A V, Kozlov V V, et al. Experiments on secondary instability of streamwise vortices in a swept-wing boundary layer[J]. Journal of Fluid Mechanics, 2005, 534:295-325. doi: 10.1017/S0022112005004386
    [94]
    White E B, Saric W S. Secondary instability of crossflow vortices[J]. Journal of Fluid Mechanics, 2005, 525:275-308. doi: 10.1017/S002211200400268X
    [95]
    赵耕夫, 徐立.高速三维边界层的横流不稳定性[J].力学学报, 1998, 30(5):521-530. doi: 10.3321/j.issn:0459-1879.1998.05.002

    Zhao G F, Xu L. Crossflows instability of high speed three-dimensional boundary layer[J]. Acta Mechanic Sinica, 1998, 30(5):521-530. doi: 10.3321/j.issn:0459-1879.1998.05.002
    [96]
    徐国亮, 符松.可压缩横流失稳及其控制[J].力学进展, 2012, 42(3):262-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201673501

    Xu G L, Fu S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3):262-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201673501
    [97]
    Reed H L, Saric W S. Stability of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 1989, 21:235-284. doi: 10.1146/annurev.fl.21.010189.001315
    [98]
    Wassermann P, Kloker M. Mechanisms and passive control of crossflow-vortex-induced transition in three-dimensional boundary layer[J]. Journal of Fluid Mechanics, 2002, 456:49-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f2b0a566fd8608af84334df49d6b986
    [99]
    Bonfigli G, Kloker M. Secondary instability of crossflow vortices:validation of the stability theory by direct numerical simulation[J]. Journal of Fluid Mechanics, 2007, 583:229-272. doi: 10.1017/S0022112007006179
    [100]
    Saric W S, Reed H L, Kerschen E J. Boundary-layer receptivity to freestream disturbances[J]. Annual Review of Fluid Mechanics, 2002, 34:291-319. doi: 10.1146/annurev.fluid.34.082701.161921
    [101]
    Saric W S, Carrillo R B Jr, Reibert M S. Leading-edge roughness as a transition control mechanism[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998.
    [102]
    Radeztsky R H Jr, Reibert M S, Saric W S. Effect of isolated micron-sized roughness on transition in swept-wing flows[J]. AIAA Journal, 1999, 37(11):1370-1377. doi: 10.2514/2.635
    [103]
    Saric W S, Reed H L, White E B. Stability and transition of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 2003, 35:413-440. doi: 10.1146/annurev.fluid.35.101101.161045
    [104]
    Kocian T S, Moyes A J, Reed H L, et al. Hypersonic crossflow instability[C]//Proc of the AIAA Aerospace Sciences Meeting. 2018.
    [105]
    Craig S A, Saric W S. Crossflow instability in a hypersonic boundary layer[J]. Journal of Fluid Mechanics, 2016, 808:224-244. doi: 10.1017/jfm.2016.643
    [106]
    Schuele C Y, Corke T C, Matlis E. Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness[J]. Journal of Fluid Mechanics, 2013, 718:5-38. doi: 10.1017/jfm.2012.579
    [107]
    Corke T, Arndt A, Matlis E, et al. Control of stationary cross-flow modes in a Mach 6 boundary layer using patterned roughness[J]. Journal of Fluid Mechanics, 2018, 856:822-849. doi: 10.1017/jfm.2018.636
    [108]
    Swanson E O, Schneider S P. Boundary-layer transition on cones at angle of attack in a Mach-6 Quiet Tunnel[C]//Proc of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2010.
    [109]
    van den Kroonenberg A, Radespiel R, Candler G, et al. Infrared measurements of boundary-layer transition on an inclined cone at Mach 6[C]//Proc of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2010.
    [110]
    Chynoweth B C, Ward C A C, Greenwood R T, et al. Measuring transition and instabilities in a Mach 6 hypersonic quiet wind tunnel[C]//Proc of the 44th AIAA Fluid Dynamics Conference. 2014.
    [111]
    Zhang C H, Tang Q, Lee C B. Hypersonic boundary-layer transition on a flared cone[J]. Acta Mechanica Sinica, 2013, 29(1):48-54. doi: 10.1007/s10409-013-0009-2
    [112]
    Danehy P M, Ivey C B, Inman J A, et al. High speed PLIF imaging of hypersonic transition over discrete cylindrical roughness element[C]//Proc of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2010.
    [113]
    易仕和, 田立丰, 赵玉新.基于NPLS技术的可压缩湍流机理实验研究新进展[J].力学进展, 2011, 41(4):379-390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000629823

    Yi S H, Tian L F, Zhao Y X. The new advance of the experimental research on compressible turbulence based on the NPLS technique[J]. Advances in Mechanics, 2011, 41(4):379-390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000629823
    [114]
    Driver D M. Application of oil-film interferometry skin-friction measurement to large wind tunnels[J]. Experiments in Fluids, 2003, 34(6):717-725. doi: 10.1007/s00348-003-0613-1
    [115]
    Pailhas G, Barricau P, Touvet Y, et al. Friction measurement in zero and adverse pressure gradient boundary layer using oil droplet interferometric method[J]. Experiment in Fluids, 2009, 47(2):195-207. doi: 10.1007/s00348-009-0650-5
    [116]
    Naughton J W, Schabron B, Hind M D, et al. Improved wall shear stress measurements on a supersonic microjet impingement surface[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011.
    [117]
    董昊, 耿玺, 陆纪椿, 等.翼型边界层转捩热/油膜及红外测量技术的对比[J].南京航空航天大学学报, 2013, 45(6):792-796. doi: 10.3969/j.issn.1005-2615.2013.06.009

    Dong H, Geng X, Lu J C, et al. Comparative investigation on hot film, oil film and infrared measurement techniques of airfoil boundary layer transition[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(6):792-796. doi: 10.3969/j.issn.1005-2615.2013.06.009
    [118]
    Dong H, Liu S C, Geng X, et al. A note on flow characterization of the FX63-137 airfoil at low Reynolds number using oil-film interferometry technique[J]. Physics of Fluid, 2018, 30(10):101701. doi: 10.1063/1.5052233
    [119]
    董昊, 史志伟, 陆纪椿, 等.高速边界层转捩的油膜干涉测量技术研究[C]//第五届近代实验空气动力学会议论文集. 2015.

    Dong H, Shi Z W, Lu J C, et al. Investigation of oil film interferometry technology on high speed boundary layer transition[C]//Proc of the 5th Modern Experimental Aerodynamics Conference. 2015.
    [120]
    Dong H, Liu S C, Geng X, et al. Influence of distributed roughness elements on boundary layer transition for NACA0012 airfoil[J]. Modern Physics Letters B, 2018, 32(29):1850349. doi: 10.1142/S0217984918503499
    [121]
    董昊, 刘是成, 杨鲤铭, 等.离散式粗糙元诱导翼型边界层转捩的数值和实验研究[J].南京航空航天大学学报, 2018, 50(6):807-814. http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201806011.htm

    Dong H, Liu S C, Yang L M, et al. Numerical simulation and experimental investigation on airfoil boundary layer transition induced by discrete roughness elements[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(6):807-814. http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201806011.htm
    [122]
    Dong H, Wang C P, Cheng K M. Experimental and numerical investigation of hypersonic jaws inlet[J]. Modern Physics Letters B, 2010, 24(13):1409-1412. doi: 10.1142/S0217984910023748
    [123]
    Wagner A, Schülein E, Petervari R, et al. Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels by means of a slender wedge probe and direct numerical simulation[J]. Journal of Fluid Mechanics, 2018, 842:495-531. doi: 10.1017/jfm.2018.132
    [124]
    朱志斌, 袁湘江, 陈林.高阶紧致格式并行分区算法[J].计算力学学报, 2015, 32(6):825-830. http://d.old.wanfangdata.com.cn/Periodical/jslxxb201506018

    Zhu Z B, Yuan X J, Chen L. Zone decomposition parallel algorithm of high order compact scheme[J]. Chinese Journal of Computational Mechanics, 2015, 32(6):825-830. http://d.old.wanfangdata.com.cn/Periodical/jslxxb201506018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)

    Article Metrics

    Article views (517) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return