Volume 34 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
CHEN Jiufen, LING Gang, ZHANG Qinghu, et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 60-66. doi: 10.11729/syltlx20180172
Citation: CHEN Jiufen, LING Gang, ZHANG Qinghu, et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 60-66. doi: 10.11729/syltlx20180172

Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone

doi: 10.11729/syltlx20180172
  • Received Date: 2018-11-20
  • Rev Recd Date: 2019-04-19
  • Publish Date: 2020-02-25
  • In order to promote the in-depth research on the hypersonic boundary layer transition and provide basic wind tunnel experimental data for the study of the boundary layer transition mechanism, the physical model validation, and the transition database construction, infrared thermography experiments of boundary layer transition are carried out in the Φ1 m hypersonic wind tunnel at CARDC. The effects of different unit Reynolds numbers, angles of attack and Mach numbers on the transition positions are studied on a 7° half-angle sharp cone. Test unit Reynolds numbers range from 0.49×107/m to 2.45×107/m. Test angles of attack range from -10° to 10°. Test Mach numbers range from 5 to 7. The head radius of the test model is 0.05mm. The quantitative infrared thermography technique is employed to obtain the temperature distribution photos of the model surface. By this way, the accurate transition positions and the effects of transition factors are obtained. Test results of the global temperature distribution show that an earlier transition occurs with the increase of Mach number. This is due to the larger Reynolds number and stronger flow field noise brought by the higher Mach number. As the unit Reynolds number increases, the transition position of the boundary layer moves forward and the transition Reynolds number remains constant about 3.0×106. When the angle of attack is small, a delayed transition occurs on the windward side and an earlier transition occurs on the leeward side with the increasing angle of attack. When the angle of attack is 10°, an earlier transition occurs at the center line of the windward side and reversed transition with angle of attack takes place, accompanied with a low heat flow strip induced by the flow separation on the leeward side.
  • loading
  • [1]
    陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3): 311-327. doi: 10.7638/kqdlxxb-2017.0030

    CHEN J Q, TU G H, ZHANG Y F, et al. Hypersonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-327. doi: 10.7638/kqdlxxb-2017.0030
    [2]
    柳森, 王宗浩, 谢爱民, 等.高超声速锥柱裙模型边界层转捩的弹道靶实验[J].实验流体力学, 2013, 27(6): 26-31. doi: 10.3969/j.issn.1672-9897.2013.06.005

    LIU S, WANG Z H, XIE A M, et al. Ballistic range experiments of hypersonic boundary layer transition on a cone-cylinder-flare configuration[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6): 26-31. doi: 10.3969/j.issn.1672-9897.2013.06.005
    [3]
    刘向宏, 赖光伟, 吴杰.高超声速边界层转捩实验综述[J].空气动力学学报, 2018, 36(2): 196-212. doi: 10.7638/kqdlxxb-2018.0017

    LIU X H, LAI G W, WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2): 196-212. doi: 10.7638/kqdlxxb-2018.0017
    [4]
    常雨, 陈苏宇, 张扣立.高超声速边界层转捩特性试验探究[J].宇航学报, 2015, 36(11): 1318-1323. doi: 10.3873/j.issn.1000-1328.2015.11.014

    CHANG Y, CHEN S Y, ZHANG K L. Experimental investigation of hypersonic boundary layer transition[J]. Journal of Astronautics, 2015, 36(11): 1318-1323. doi: 10.3873/j.issn.1000-1328.2015.11.014
    [5]
    MUIR J F, TRUJILLO A A. Experimental investigation of the effects of nose bluntness, free-stream unit Reynolds number, and angle of attack on cone boundary layer transition at a Mach number of 6[R]. AIAA-1972-216, 1972.
    [6]
    STETSON K F, GEORGE H R. Shock tunnel investigation of boundary layer transition at Ma=5.5[J]. AIAA Journal, 1967, 5(5): 899-906.
    [7]
    GROSSIR G, PINNA F, BONUCCI G, et al. Hypersonic boundary layer transition on a 7 degree half-angle cone at Mach 10[R]. AIAA-2014-2779, 2014.
    [8]
    JULIANO T J, KIMMEL R L, WILLEMS S, et al. HIFiRE-1 boundary-layer transition: ground test results and stability analysis[R]. AIAA-2015-1736, 2015.
    [9]
    WILLEMS S, GVLHAN A, JULIANO T J, et al. Laminar to turbulent transition on the HIFiRE-1 cone at Mach 7 and high angle of attack[R]. AIAA-2014-0428, 2014.
    [10]
    JULIANO T J, KIMMEL R L, WILLEMS S, et al. HIFiRE-1 surface pressure fluctuations from high Reynolds, high angle ground test[R]. AIAA-2014-0429, 2014.
    [11]
    HORVATH T J, BERRY S A. HOLLIS B R, et al. Boundary layer transition on slender cones in conventional and low disturbance Mach 6 wind tunnels[R]. AIAA-2002-2743, 2012.
    [12]
    BI Z X, ZHU N J, SHEN Q, et al. Measurements on transition of hypersonic boundary layer over circular cone[R]. AIAA-2007-6728, 2007.
    [13]
    ZHANG C H, TANG Q, LEE C B. Hypersonic boundary-layer transition on a flared cone[J]. Acta Mechanica Sinica, 2013, 29(1): 48-54. doi: 10.1007/s10409-013-0009-2
    [14]
    SOFTLEY E J. Boundary layer transition on hypersonic blunt, slender cones[R]. AIAA-1969-705, 1969.
    [15]
    KIMMEL R L. The effect of pressure gradients on transition zone length in hypersonic boundary layers[J]. Journal of Fluids Engineering, 1997, 119(1): 36-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c4f282494cda00935103a30cf644bec
    [16]
    ANDERSON J D JR. Hypersonic and high temperature gas dynamics[M]. New-York: McGraw-Hill Book Company, 1989.
    [17]
    OWEN F K, HORSTMAN C C, STAINBACK P C, et al. Comparison of wind tunnel transition and freestream disturbances measurements[J]. AIAA Journal, 1975, 13(3): 266-269. doi: 10.2514/3.49691
    [18]
    JULIANO T J, BORG M P, SCHNEIDER S P. Quiet tunnel measurements of HIFiRE-5 boundary-layer transition[J]. AIAA Journal, 2015, 53(4): 832-846. doi: 10.2514/1.J053189
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (343) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return