Xu Kejing, Chang Juntao, Li Nan, et al. Recent research progress on motion characteristics and flow mechanism of shock train in an isolator with background waves[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 31-42. doi: 10.11729/syltlx20180196
Citation: Xu Kejing, Chang Juntao, Li Nan, et al. Recent research progress on motion characteristics and flow mechanism of shock train in an isolator with background waves[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 31-42. doi: 10.11729/syltlx20180196

Recent research progress on motion characteristics and flow mechanism of shock train in an isolator with background waves

doi: 10.11729/syltlx20180196
  • Received Date: 2018-12-13
  • Rev Recd Date: 2019-04-29
  • Publish Date: 2019-06-25
  • The present paper aims to provide a summary report on recent research progress about motion characteristics and flow mechanism of a shock train in a hypersonic inlet-isolator with complex background waves to help the researchers working on hypersonic inlet-isolator easily with their further work. It covers shock train motion characteristics, mechanism of a shock train jumps, and the method for the model of a shock train jumps with complex background waves. At first, the investigations for the motion characteristics of shock train with fixed or variable background waves are described, which point out that the boundary layer separation caused by the alternating favorable or adverse pressure gradient in the isolator is the physical mechanism of the shock train motion characteristics. Followed, the triggering mechanism and condition of shock train jumps in an isolator with background waves are discussed. At last, based on the understanding of the motion characteristics and jump mechanism, the method for the mathematical model of the shock train motion in an isolator with background waves is given to provide a reference for the control of the shock train leading edge.
  • loading
  • [1]
    Curran E T, Heiser W H, Pratt D T. Fluid phenomena in scramjet combustion systems[J]. Annual review of Fluid Mechanics, 1996, 28(1):323-360 doi: 10.1146/annurev.fl.28.010196.001543
    [2]
    Waltrup P J, Billig F S. Structure of shock waves in cylindrical ducts[J]. AIAA Journal, 1973, 11(10):1404-1408. doi: 10.2514/3.50600
    [3]
    Billig F S. Research on supersonic combustion[J]. Journal of Propulsion and Power, 1993, 9(4):499-514. doi: 10.2514/3.23652
    [4]
    张堃元, 王成鹏, 杨建军, 等.带高超进气道的隔离段流动特性[J].推进技术, 2002, 23(4):311-314. doi: 10.3321/j.issn:1001-4055.2002.04.012

    Zhang K Y, Wang C P, Yang J J, et al. Investigation of flow in isolator of hypersonic inlet[J]. Journal of Propulsion Technology, 2002, 23(4):311-314. doi: 10.3321/j.issn:1001-4055.2002.04.012
    [5]
    Wang C P, Zhang K Y, Yang J J. Analysis of flows in scramjet isolator combined with hypersonic inlet[R]. AIAA-2005-24, 2005.
    [6]
    Wagner J L, Yuceil K B, Valdivia A, et al. Experimental investigation of unstart in an inlet/isolator or model in Mach 5 flow[J]. AIAA Journal, 2009, 47(6):1528-1542. doi: 10.2514/1.40966
    [7]
    Wagner J L, Yuceil K B, Clemens N T. Velocimetry measurements of unstart of an inlet-isolator model in Mach 5 flow[J]. AIAA Journal, 2010, 48(9):1875-1888. doi: 10.2514/1.J050037
    [8]
    张航, 谭慧俊, 孙姝.进口斜激波、膨胀波干扰下等直隔离段内的激波串特性[J].航空学报, 2010, 31(9):1733-1739. http://d.old.wanfangdata.com.cn/Periodical/hkxb201009005

    Zhang H, Tan H J, Sun S. Characteristics of shock train in a straight isolator with interference of incident shock waves and corner expansion waves[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1733-1739. http://d.old.wanfangdata.com.cn/Periodical/hkxb201009005
    [9]
    田旭昂, 王成鹏, 程克明. Ma5斜激波串动态特性试验研究[J].推进技术, 2014, 35(8):1030-1039.

    Tian X A, Wang C P, Cheng K M. Experimental investigation of dynamic characteristics of oblique shock train in mach 5 flow[J]. Journal of Propulsion Technology, 2014, 35(8):1030-1039.
    [10]
    Tan H J, Sun S, Huang H X. Behavior of shock trains in a hypersonic inlet/isolator model with complex background waves[J]. Experiments in Fluids, 2012, 53(6):1647-1661. doi: 10.1007/s00348-012-1386-1
    [11]
    Huang H X, Sun S, Tan H J, et al. Characterization of two typical unthrottled flows in hypersonic inlet/isolator models[J]. Journal of Aircraft, 2015, 52(5):1715-1721. doi: 10.2514/1.C033190
    [12]
    Koo H, Raman V. Large-eddy simulation of a supersonic inlet-isolator[J]. AIAA Journal, 2012, 50(7):1596-1613. doi: 10.2514/1.J051568
    [13]
    Xu K J, Chang J T, Zhou W X, et al. Mechanism and prediction for occurrence of shock-train sharp forward movement[J]. AIAA Journal, 2016, 54(1):1403-1412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=260709d7c2fe50b58d7bdb3ff4625e54
    [14]
    Li N, Chang J T, Yu D R, et al. Mathematical model of shock-train path with complex background waves[J]. Journal of Propulsion and Power, 2017, 33(2):468-478. doi: 10.2514/1.B36234
    [15]
    Xu K J, Chang J T, Zhou W X, et al. Mechanism of shock train rapid motion induced by variation of attack angle[J]. Acta Astronautica, 2017, 140:18-26. doi: 10.1016/j.actaastro.2017.08.009
    [16]
    Dessornes O, Scherrer D, Novelli P. Tests of japhar dual mode ramjet engine[R]. AIAA-2001-1886, 2001.
    [17]
    Denis S R, Kau H P, Brandstetter A. Experimental study on transition between ramjet and scramjet modes in a dual-mode combustor[R]. AIAA 2003-7048, 2003.
    [18]
    Chun J, Scheurermann T, von Wolfersdorf J, et al. Experimental study on combustion mode transition in a scramjet with parallel injection[R]. AIAA-2006-8063, 2006.
    [19]
    Le D B, Goyne C P, Krauss R H, et al. Experimental study of a dual-mode scramjet isolator[J]. Journal of Propulsion and Power, 2008, 24(5):1050-1057. doi: 10.2514/1.32591
    [20]
    Yu D R, Cui T, Bao W. Catastrophe, hysteresis and bifurcation of mode transition in scramjet engines and its model[J]. Science in China Series E:Technological Sciences, 2009, 52(6):1543-1550. doi: 10.1007/s11431-009-0181-6
    [21]
    Kobayashi K, Tomioka S, Kato K, Performance of a dual-mode combustor with multistaged fuel injection[J]. Journal of Propulsion and Power, 2006, 22(3):518-526. doi: 10.2514/1.19294
    [22]
    Qin B, Chang J T, Jiao X L, et al. Unstart margin characterization method of scramjet considering isolator-combustor interactions[J]. AIAA Journal, 2015, 53(2):493-500. doi: 10.2514/1.J053547
    [23]
    Gnani F, Zare-Behtash H, Kontis K. Pseudo-shock waves and their interactions in high-speed intakes[J]. Progress in Aerospace Science, 2016, 82:36-56. doi: 10.1016/j.paerosci.2016.02.001
    [24]
    Tu Q Y, Segal C. Isolator/combustion chamber interactions during supersonic combustion[J]. Journal of Propulsion and Power, 2010, 26(1):182-186. doi: 10.2514/1.46156
    [25]
    Xu K J, Chang J T, Li N, et al. Preliminary investigation of limits of shock train jumps in a hypersonic inlet-isolator[J]. European Journal of Mechanics-B/Fluids, 2018, 72:664-675. doi: 10.1016/j.euromechflu.2018.07.015
    [26]
    VeillardX, Tahir R, Timofeev E, et al. Limiting contractions for starting simple ramp-type scramjet intakes with overboard spillage[J]. Journal of Propulsion and Power, 2008, 24(5):1042-1049. doi: 10.2514/1.34547
    [27]
    Xu K J, Chang J T, Li N, et al. Experimental investigation of mechanism and limits for shock train rapid forward movement[J]. Experimental Thermal and Fluid Science, 2019, 98:336-345. https://www.sciencedirect.com/science/article/pii/S0894177718303959
    [28]
    Huang H X, Tan H J, Sun S, et al. Evolution of supersonic corner vortex in a hypersonic inlet/isolator model[J]. Physics of Fluids, 2016, 28(12):126101. doi: 10.1063/1.4971448
    [29]
    Funderburk M, Narayanaswamy V. Experimental investigation of primary and corner shock boundary layer interactions at mild back pressure ratios[J]. Physics of Fluids, 2016, 28(8):086102. doi: 10.1063/1.4960963
    [30]
    Pirozzoli S, Grasso F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at Ma=2.25[J]. Physics of Fluids, 2006, 18(6):065113. doi: 10.1063/1.2216989
    [31]
    Bermejo-Moreno I, Campo L, Larsson J, et al. Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations[J]. Journal of Fluid Mechanics, 2014, 758:5-62. doi: 10.1017/jfm.2014.505
    [32]
    Chakravarthy R V K, Nair V, Muruganandam T M, et al. Analytical and numerical study of normal shock response in a uniform duct[J]. Physics of Fluids, 2018, 30(8):086101. doi: 10.1063/1.5027903
    [33]
    Bruce P J K, Babinsky H. Unsteady shock wave dynamics[J]. Journal of Fluid Mechcanics, 2008, 603:463-473. doi: 10.1017/S0022112008001195
    [34]
    Cui T, Wang Y, Yu D R. Bistability and hysteresis in a nonlinear dynamic model of shock motion[J]. Journal of Aircraft, 2014, 51(5):1373-1379. doi: 10.2514/1.C032175
    [35]
    Su W Y, Zhang K Y. Back-pressure effects on the hypersonic inlet-isolator pseudoshock motion[J]. Journal of Propulsion and Power, 2013, 29(6):1391-1399. doi: 10.2514/1.B34803
    [36]
    Li N, Chang J T, Xu K J, Yu D R, et al. Oscillation of the shock train in an isolator with incident shocks[J]. Physics of Fluids, 2018, 30(11):116102. doi: 10.1063/1.5053451
    [37]
    Li N, Chang J T, Xu K J, et al. Prediction dynamic model of shock train with complex background waves[J]. Physics of Fluids, 2017, 29(11):116103. doi: 10.1063/1.5000876
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(1)

    Article Metrics

    Article views (389) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return