Volume 33 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
Hu Buyuan, Huang Yong, Zhang Guichuan, et al. Internal mass flow control technology of low speed TPS tests[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 54-58. doi: 10.11729/syltlx20180201
Citation: Hu Buyuan, Huang Yong, Zhang Guichuan, et al. Internal mass flow control technology of low speed TPS tests[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 54-58. doi: 10.11729/syltlx20180201

Internal mass flow control technology of low speed TPS tests

doi: 10.11729/syltlx20180201
  • Received Date: 2018-12-17
  • Rev Recd Date: 2019-09-28
  • Publish Date: 2019-12-25
  • The TPS testing technology is one of the best methods to study the aircraft/propulsion integrated design in wind tunnels. TPS units, used as engine simulators, are driven by high pressure air. As a result, the mass flow control accuracy of high pressure air has a direct relationship with the wind tunnel testing accuracy. Because of space limits of wind tunnel testing models, the external mass flow control method can not control more than 2 TPS units. In order to overcome deficiencies of the external mass flow control method, a kind of internal mass flow control device was designed. This device integrates the control and measure function, and can control 4 TPS units simultaneously. A check test was conducted in the TPS testing chamber of CARDC. The testing results indicate that the device has good linear mass flow control ability, the control resolution is better than 0.15 g/s, and the control repeatability accuracy is better than 3 g/s. A full model TPS test was conducted in the 8 m×6 m low speed wind tunnel of CARDC as well. The repeatability testing accuracy meets the demands of GJB, which verifies the control accuracy of the device.
  • loading
  • [1]
    刘积仓.飞机设计手册:第七册民机构型初步设计与推进系统一体化设计[M].北京:航空工业出版社, 2000.
    [2]
    王勋年.低速风洞试验[M].北京:国防工业出版社, 2002.
    [3]
    Welge H R, Ongarato J R. Powered engine simulator procedures and experience for the DC-10 wing engine at high subsonic speeds[R]. AIAA-70-590, 1970.
    [4]
    Harris A E, Carter E C. Wind tunnel test and analysis technique using powered simulators for civil nacelle installation drag assessment[R]. AGARD CP-301, 1981.
    [5]
    Hodges R M Jr, Gerhold C, Bakster D, et al. Acoustic testing of very high bypass ratio turbofan using turbine powered scale models[R]. AIAA-94-2552, 1994.
    [6]
    Tompkins D M, Long K R, Flamm J D, et al. Experimental validation of modifications to a TDI model 2700 turbine powered simulator to simulate a high-bypass ratio engine[R]. AIAA-2014-3888, 2014.
    [7]
    Ewald B, Smith R. The role and implementation of different nacelle/engine simulation concepts for wind tunnel testing in research and development work on transport aircraft[R]. AGARD CP-301, 1981.
    [8]
    Ewald B. Transport configuration wind tunnel tests with engine simulation[R]. AIAA-84-0592, 1984.
    [9]
    Flaig A. Results of wind tunnel ground effect measurements on airbus A320 using turbine power simulation and moving tunnel floor techniques[R]. AIAA-90-1427, 1990.
    [10]
    徐铁军, 郝卫东, 李聪, 等.气动院校准箱工作原理分析及TPS校准目标量的获得方法[J].流体力学实验与测量, 2004, 18(4): 99-104. doi: 10.3969/j.issn.1672-9897.2004.04.021

    Xu T J, Hao W D, Li C, et al. Analysis of operative principles of calibration tank in CARIA and acquired methods of objective parameters in TPS calibration[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(4): 99-104. doi: 10.3969/j.issn.1672-9897.2004.04.021
    [11]
    芮伟, 易凡, 杜宁, 等. 2.4 m跨声速风洞TPS测控系统设计与实现[J].实验流体力学, 2008, 22(4): 72-75. doi: 10.3969/j.issn.1672-9897.2008.04.016

    Rui W, Yi F, Du N, et al. Design and realization of TPS measurement and control system for 2.4 m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(4): 72-75. doi: 10.3969/j.issn.1672-9897.2008.04.016
    [12]
    熊能, 林俊. 2.4 m跨声速风洞带TPS测力试验数据精度要求分析[J].流体力学实验与测量, 2004, 18(3): 42-46. doi: 10.3969/j.issn.1672-9897.2004.03.009

    Xiong N, Lin J. An analysis of data accuracy of force measurement testing with TPS in 2.4 m transonic wind tunnel[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(3): 42-46. doi: 10.3969/j.issn.1672-9897.2004.03.009
    [13]
    章荣平, 王勋年, 黄勇, 等.低速风洞全TPS试验空气桥的设计与优化[J].实验流体力学, 2012, 26(6): 48-52. doi: 10.3969/j.issn.1672-9897.2012.06.011

    Zhang R P, Wang X N, Huang Y, et al. Design and optimization of the air bridge for low speed full-span TPS test[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6): 48-52. doi: 10.3969/j.issn.1672-9897.2012.06.011
    [14]
    黄勇, 胡卜元, 张卫国, 等. 8 m×6 m风洞TPS反推力试验技术[J].空气动力学学报, 2016, 34(3): 346-353. doi: 10.7638/kqdlxxb-2015.0132

    Huang Y, Hu B Y, Zhang W G, et al. Reverse thrust testing technique in the 8 m×6 m low speed tunnel of CARDC[J]. Acta Aerodynamica Sinica, 2016, 34(3): 346-353. doi: 10.7638/kqdlxxb-2015.0132
    [15]
    徐华舫.空气动力学基础[M].北京:北京航空学院出版社, 1987.
    [16]
    British Standards Institution. Measurement of gas flow by means of critical flow Venturi nozzles: BS EN ISO 9300-2005[S]. London: Standards Policy and Strategy Committee, 2005.
    [17]
    钱翼稷.空气动力学[M].北京:北京航空航天大学出版社, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (160) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return