Qiao Wenyou, Yu Anyuan. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59. doi: 10.11729/syltlx20190028
Citation: Qiao Wenyou, Yu Anyuan. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59. doi: 10.11729/syltlx20190028

Overview on integrated design of inward-turning inlet with aircraft forebody

doi: 10.11729/syltlx20190028
  • Received Date: 2019-01-24
  • Rev Recd Date: 2019-04-15
  • Publish Date: 2019-06-25
  • The integrated design of aircraft forebody/hypersonic inward-turning inlet has become a hot spot in the research of airbreathing hypersonic propulsion system. This paper mainly analyzes the design method of hypersonic inward-turning inlet and its integration with aircraft forebody from the perspective of aerodynamic design. For the design method of the inward-turning inlet, it mainly includes direct streamline-tracing method, the osculating method with uniform incoming flow and the inverse design method based on the forebody non-uniform flow-field. The integrated design method based on the inward-turning inlet mainly includes two types:the independent intake mode facing the incoming flow and the pre-compression intake mode with the forebody. Combined with the design method of the inward-turning inlet, the design methods of these two types are analyzed in details. According to the analysis, the design method of the inward-turning inlet based on the uniform forebody flow-field has been further developed, but it is necessary to develop the design method under non-uniform incoming flow to enhance the flexibility of the integrated design. With the in-depth development of the inward-turning inlet design method, the integrated design method is bound to be further developed.
  • loading
  • [1]
    Haney J W, Beaulieu W B. Waverider inlet integration issues[R]. AIAA-1994-0383, 1994.
    [2]
    Heiser W H, Pratt D T, Daniel H D, et al. Hypersonic airbreathing propulsion[M]. Washington D C:American Institute of Aeronautics and Astronautics Inc, 1994.
    [3]
    Javaid K H, Serghides V C. Airframe-propulsion integration methodology for waverider-derived hypersonic cruise aircraft design concepts[R]. AIAA-2004-1201, 2004.
    [4]
    Andrews E, Mackley E. Review of NASA's hypersonic research engine project[R]. AIAA-93-2323, 1993.
    [5]
    吴颖川, 贺元元, 贺伟, 等.吸气式高超声速飞行器机体推进一体化技术研究进展[J].航空学报, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020

    Wu Y C, He Y Y, He W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020
    [6]
    向先宏, 钱战森.高超声速飞行器机体/推进气动布局一体化设计技术研究现状[J].航空科学技术, 2015, 10:44-52. http://cdmd.cnki.com.cn/Article/CDMD-10335-1018229103.htm

    Xiang X H, Qian Z S. An overview and development analysis of hypersonic airframe/propulsion integrative design technology[J]. Aeronautical Science and Technology, 2015, 10:44-52. http://cdmd.cnki.com.cn/Article/CDMD-10335-1018229103.htm
    [7]
    尤延铖, 梁德旺, 郭荣伟, 等.高超声速三维内收缩式进气道/乘波前体一体化设计研究评述[J].力学进展, 2009, 39(5):513-525. doi: 10.3321/j.issn:1000-0992.2009.05.001

    You Y C, Liang D W, Guo R W, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody[J]. Advances in Mechanics, 2009, 39(5):513-525. doi: 10.3321/j.issn:1000-0992.2009.05.001
    [8]
    王江峰, 王旭东, 李佳伟, 等.高超声速巡航飞行器乘波布局气动设计综述[J].空气动力学学报, 2018, 36(5):705-728. doi: 10.7638/kqdlxxb-2017.0117

    Wang J F, Wang X D, Li J W, et al. Overview on aerodynamic design of cruising waverider configuration for hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2018, 36(5):705-728. doi: 10.7638/kqdlxxb-2017.0117
    [9]
    Ding F, Liu J, Shen C B, et al. An overview of research on waverider design methodology[J]. Acta Astronautica, 2017, 140:190-205. doi: 10.1016/j.actaastro.2017.08.027
    [10]
    Ding F, Liu J, Shen C B, et al. An overview of waverider design concept in airframe/inlet integration methodology for air-breathing hypersonic vehicles[J]. Acta Astronautica, 2018, 152:639-656. doi: 10.1016/j.actaastro.2018.09.002
    [11]
    丁峰, 柳军, 沈赤兵, 等.乘波概念应用于吸气式高超声速飞行器机体/进气道一体化设计方法研究综述[J].实验流体力学, 2018, 32(6):16-26. http://www.syltlx.com/CN/abstract/abstract11151.shtml

    Ding F, Liu J, Shen C B, et al. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6):16-26. http://www.syltlx.com/CN/abstract/abstract11151.shtml
    [12]
    Billig F S, Jacobsen L S. Comparison of planar and axisymmetric flowpaths for hydrogen fueled space access vehicles[R]. AIAA-2003-4407, 2003.
    [13]
    Zanchetta M, Cain T. An axisymmetric internal compression inlet[R]. AIAA-1998-1525, 1998.
    [14]
    Goldfeld M A, Nestoulia R V. Numerical and experimental studies of 3D hypersonic inlet[R]. AIAA-2003-14, 2003.
    [15]
    Barkmeyer D E F, Starkey R P, Lewis M J. Inverse waverider design for inward turning inlets[R]. AIAA-2005-3915, 2005.
    [16]
    Smart M K. Design of three-dimensional hypersonic inlets with rectangular to elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3):408-416. doi: 10.2514/2.5459
    [17]
    Smart M K, White J A. Computational investigation of the performance and back-pressure limits of a hypersonic inlet[R]. AIAA-2002-508, 2002.
    [18]
    Smart M K, Trexler C A. Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 2004, 20(2):288-293. doi: 10.2514/1.1296
    [19]
    尤延铖.三维内乘波式高超声速进气道设计方法与流动特征研究[D].南京: 南京航空航天大学, 2008.

    You Y C. Designing concept and flow characteristic research of internal waverider hypersonic inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
    [20]
    南向军.压升规律可控的高超声速内收缩进气道设计方法研究[D].南京: 南京航空航天大学, 2012.

    Nan X J. Investigation on design methodology of hypersonic inward turning inlets with controlled pressure rise law[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
    [21]
    李永洲.马赫数分布可控的高超声速内收缩进气道及其一体化设计研究[D].南京: 南京航空航天大学, 2014.

    Li Y Z. Investigation of hypersonic inward turning inlet with controlled Mach number distribution and its integrated design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
    [22]
    Busemann A. Die achsensymmetrische kegelige überschallströmung[J]. Luftfahrtforschung, 1942, 19(4):137-144.
    [23]
    Dsouza N, Möelder S. Applicability of hypersonic small-disturbance theory and similitude to internal hypersonic conical flows[J]. Journal of Spacecraft and Rockets, 1970, 7(2):149-154. doi: 10.2514/3.29890
    [24]
    Billig F S, Baurle R A, Tam C J, et al. Design and analysis of streamline traced hypersonic inlets[R]. AIAA-1999-4974, 1999.
    [25]
    Jacobsen L S, Tam C J, Behdadnia R, et al. Starting and operation of a streamline-traced Busemann inlet at Mach 4[R]. AIAA-2006-4508, 2006.
    [26]
    Flock A K, Guelhan A. Viscous effects and truncation effects in axisymmetric Busemann scramjet intakes[J]. AIAA Journal, 2016, 54(6):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e91e1802dc1cc3dbbac606a9f25ea4fc
    [27]
    Walker S H, Rodgers F C, Esposita A L. Hypersonic collaborative Australia/United States experiment (Hycause)[R]. AIAA-2005-3254, 2005.
    [28]
    孙波, 张堃元, 王成鹏, 等. Busemann进气道无粘流场数值分析[J].推进技术, 2005, 26(3):242-247. doi: 10.3321/j.issn:1001-4055.2005.03.012

    Sun B, Zhang K Y, Wang C P, et al. Inviscid CFD analysis of hypersonic Busemann inlet[J] Journal of Propulsion Technology, 2005, 26(3):242-247. doi: 10.3321/j.issn:1001-4055.2005.03.012
    [29]
    孙波, 张堃元. Busemann进气道起动问题初步研究[J].推进技术, 2006, 27(2):128-131. doi: 10.3321/j.issn:1001-4055.2006.02.008

    Sun B, Zhang K Y. Prenminary investigation on Busemann inlet starting characteristics[J]. Journal of Propulsion Technology, 2006, 27(2):128-131. doi: 10.3321/j.issn:1001-4055.2006.02.008
    [30]
    郭军亮, 黄国平, 尤延铖, 等.改善内乘波式进气道出口均匀性的内收缩基本流场研究[J].宇航学报, 2009, 30(5):1934-1940, 1952. doi: 10.3873/j.issn.1000-1328.2009.05.032

    Guo J L, Huang G P, You Y C, et al. Study of internal compression flowfield for improving the outflow uniformity of internal waverider inlet[J]. Journal of Astronautics, 2009, 30(5):1934-1940, 1952. doi: 10.3873/j.issn.1000-1328.2009.05.032
    [31]
    O'Brien T F, Colville J R. Blunt leading edge effects on inviscid truncated Busemann inlet performance[R]. AIAA-2007-5411, 2007.
    [32]
    O'Brien T F, Colville J R. Analytical computation of leading-edge truncation effects on inviscid Busemann-inlet performance[J]. Journal of Propulsion and Power, 2008, 24(4):655-661. doi: 10.2514/1.30178
    [33]
    Ramasubramanian V, Lewis M, Starkey R. Performance of various truncation strategies employed on hypersonic Busemann inlets[R]. AIAA-2009-7249, 2009.
    [34]
    黄慧慧, 黄国平, 俞宗汉, 等.高外压缩比的高超声速内乘波进气道设计[J].工程热物理学报, 2015, 36(6):1233-1237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201506015

    Huang H H, Huang G P, Yu Z H, et al. The design of internal waverider hypersonic inlet with high ratio of external compression[J]. Journal of Engineering Thermophysics, 2015, 36(6):1233-1237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201506015
    [35]
    Matthews A J, Jones T V. Design and test of a modular waverider hypersonic intake[J]. Journal of propulsion and power, 2006, 22(4):913-920. doi: 10.2514/1.17874
    [36]
    李永洲, 张堃元, 钟启涛, 等.变中心体新型轴对称基准流场研究[C].第四届冲压发动机技术交流会, 北京, 2013.
    [37]
    王卫星, 顾强, 郭荣伟.内转式进气道流动控制研究[J].推进技术, 2017, 38(5):961-967. http://d.old.wanfangdata.com.cn/Periodical/tjjs201705001

    Wang W X, Gu Q, Guo R W. Srudy of flow control of inward turning inlet[J]. Journal of Propulsion Technology, 2017, 38(5):961-967. http://d.old.wanfangdata.com.cn/Periodical/tjjs201705001
    [38]
    Malo-Molina F J, Gaitonde D V, Kutschenreuter P H. Numerical investigation of an innovative inward turning inlet[R]. AIAA-2005-4871, 2005.
    [39]
    Malo-Molina F J, Gaitonde D V, Ebrahimi H B, et al. Analysis of an innovative inward turning inlet using an air-JP8 combustion mixture at Mach 7[R]. AIAA-2006-3041, 2006.
    [40]
    董昊.高超声速咽式进气道流场特性和设计方法研究[D].南京: 南京航空航天大学, 2010.

    Dong H. Investigation of flowfield characteristics and design methodology of hypersonic Jaws inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.
    [41]
    辜天来, 张帅, 郑耀.咽式进气道/等直隔离段的反压特性[J].浙江大学学报(工学版), 2016, 50(7):1418-1424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201607027

    Gu T L, Zhang S, Zheng Y. Back pressure characteristics of jaws inlet with constant-area isolator[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(7):1418-1424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201607027
    [42]
    辜天来, 付磊, 张帅, 等.咽式进气道设计工况下性能初步分析[J].航空动力学报, 2014, 29(9):2070-2078. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201409008

    Gu T L, Fu L, Zhang S, et al. Preliminary analysis of jaws inlet performance under design conditions[J]. Journal of Aerospace Power, 2014, 29(9):2070-2078. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201409008
    [43]
    Malo-Molina F J, Gaitonde D V, Ebrahimi H B. Three dimensional analysis of a fully coupled hypersonic air-breathing inlet-combustor flowpath[R]. AIAA-2010-412, 2010.
    [44]
    Malo-Molina F J, Gaitonde D, Ebrahimi H B, et al. Three-dimensional analysis of a supersonic combustor coupled to innovative inward-turning inlets[J]. AIAA Journal, 2010, 48(3):572-582. doi: 10.2514/1.43646
    [45]
    方兴军.控制出口速度分布的超声速内流通道反设计[D].南京: 南京航空航天大学, 2011.

    Fang X J. Inverse design of supersonic internal flow path based on given outflow velocity profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
    [46]
    刘燚.控制出口马赫数分布的高超声速压缩通道反设计[D].南京: 南京航空航天大学, 2012.

    Liu Y. Inverse design of hypersonic air compression tube for generating desirable Mach profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
    [47]
    韩伟强, 朱呈祥, 尤延铖, 等.给定下游边界的超声速流场逆向求解方法[J].推进技术, 2016, 37(4):624-631. http://d.old.wanfangdata.com.cn/Periodical/tjjs201604004

    Han W Q, Zhu C X, You Y C, et al. An inverse method for supersonic flowfield with given downstream boundary[J]. Journal of Propulsion Technology, 2016, 37(4):624-631. http://d.old.wanfangdata.com.cn/Periodical/tjjs201604004
    [48]
    卫锋, 贺旭照, 贺元元, 等.三维内转式进气道双激波基准流场的设计方法[J].推进技术, 2015, 36(3):358-364. http://d.old.wanfangdata.com.cn/Periodical/tjjs201503006

    Wei F, He X Z, He Y Y, et al. Design method of dual-shock wave basic flow-field for inward turning inlet[J]. Journal of Propulsion Technology, 2015, 36(3):358-364. http://d.old.wanfangdata.com.cn/Periodical/tjjs201503006
    [49]
    何家祥, 金东海.基于Busemann压升规律的可控消波内转基准流场设计[J].航空动力学报, 2017, 32(5):1168-1175. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201705018

    He J X, Jin D H. Busemann pressure rise distribution based design of inward turning basic flowfield with controlled and cancelled shock waves[J]. Journal of Aerospace Power, 2017, 32(5):1168-1175. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201705018
    [50]
    乔文友, 余安远, 黎崎.控制出口截面速度方向的内转式进气道设计方法研究[C].航天三网第38届技术交流会暨第二届空天动力联合会议, 大连, 2017.
    [51]
    乔文友, 黄国平, 夏晨, 等.发展用于高速飞行器前体/进气道匹配设计的逆特征线法[J].航空动力学报, 2014, 29(6):1444-1452. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201406026

    Qiao W Y, Huang G P, Xia C, et al. Development of inverse characteristic method for matching design of high-speed aircraft forebody/inlet[J]. Journal of Aerospace Power, 2014, 29(6):1444-1452. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201406026
    [52]
    谭慧俊, 黄河峡, 卜焕先, 等.一种高超声速内转式进气道的内通道设计方法: CN105205220A[P]. 2015-12-30.
    [53]
    Sobieczky H, Dougherty F C, Jones K. Hypersonic waverider design from given shock waves[C]. The 1st International Hypersonic Waverider Symposium, University of Maryland, USA, 1990.
    [54]
    Xiao Y B, Yue L J, Chenr L H, et. al. Iso-contraction-ratio methodology for the design of hypersonic inward turning inlets with shape transition[R]. AIAA-2012-5978, 2012.
    [55]
    尤延铖, 黄国平, 郭军亮, 等.基于任意激波形状的内乘波式高超声速进气道: ZL200820159849. 3[P]. 2009-09-02.
    [56]
    肖雅彬, 岳连捷, 卢洪波, 等.局部收缩比一致的变截面高超声速内转式进气道: ZL201210157992. X[P]. 2014-06-13.
    [57]
    乔文友.可排除前体低能量的高超声速三维内收缩式进气道研究[D].南京: 南京航空航天大学, 2015.

    Qiao W Y. Design and investigation of a novel hypersonic three-dimensional inward turning inlet for removing forebody low kinetic flow[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
    [58]
    Jones K D. A new inverse method for generating high-speed aerodynamic flows with application to waverider design[D]. Colorado: University of Colorado Boulder, 1993.
    [59]
    Jones K D, Center K B. Waverider design methods for non-conical shock geometries[R]. AIAA-2002-3204, 2002.
    [60]
    刘小勇.超燃冲压发动机技术[J].飞航导弹, 2003, 2:38-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhdd201307020
    [61]
    甘文彪, 阎超, 耿云飞, 等.乘波飞行器一体化构型设计[J].空气动力学学报, 2012, 30(1):68-73. doi: 10.3969/j.issn.0258-1825.2012.01.012

    Gan W B, Yan C, Geng Y F, et al. Waverider design of integrated configuration[J]. Acta Aerodynamica Sinica, 2012, 30(1):68-73. doi: 10.3969/j.issn.0258-1825.2012.01.012
    [62]
    Nonweiler T R F. Aerodynamic problems of manned space vehicles[J]. Journal of the Royal Aeronautical Society, 1959, 63(585):521-528. doi: 10.1017/S0368393100071662
    [63]
    Rasmussen M. Hypersonic flow[M]. New York:John Wiley & Sons Inc, 1994.
    [64]
    Starkey R P, Lewis M J. Critical design issues for airbreathing hypersonic waverider missiles[J]. Journal of Spacecraft and Rockets, 2001, 38(4):510-519. doi: 10.2514/2.3734
    [65]
    Jones J G, Moore K C, Pike J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Ingenieur-Archiv, 1968, 37(1):56-72. doi: 10.1007/BF00532683
    [66]
    He X Z, Le J L, Zhou Z, et al. Osculating inward turning cone waverider/inlet(OICWI) design methods and experimental study[R]. AIAA-2012-5810, 2012.
    [67]
    Lewis M J, Takashima N. Engine/airframe integration for waverider cruise vehicles[R]. AIAA-1993-0507, 1993.
    [68]
    Takashima N, Lewis M J. Wedge-cone waverider configuration for engine-airframe interaction[J]. Journal of Aircraft, 2012, 32(5):1142-1144. http://cn.bing.com/academic/profile?id=d6d6d8d362f6200880cd11cd3a683a10&encoded=0&v=paper_preview&mkt=zh-cn
    [69]
    赵桂林, 胡亮, 闻洁, 等.乘波构形和乘波飞行器研究综述[J].力学进展, 2003, 33(3):357-374. doi: 10.3321/j.issn:1000-0992.2003.03.007

    Zhao G L, Hu L, Wen J, et al. An overview of the research on waveriders and waverider-derived hypersonic vehicles[J]. Advances in Mechanics, 2003, 33(3):357-374. doi: 10.3321/j.issn:1000-0992.2003.03.007
    [70]
    希舍尔.高超声速飞行器气动热力学设计问题精选[M].北京:国防工业出版社, 2013.

    Hirschel E H. Selected aerothermodynamic design problems of hypersonic flight vehicles[M]. Beijing:National Defense Industry Press, 2013.
    [71]
    Kothari A P, Tarpley C, McLaughlin T A, et al. Hypersonic vehicle design using inward turning flow fields[R]. AIAA-1996-2552, 1996.
    [72]
    Mehta U, Aftosmis M, Bowles J, et al. Skylon aerospace plane and its aerodynamics and plumes[J]. Journal of Spacecraft and Rockets, 2016, 53(2):340-353. doi: 10.2514/1.A33408
    [73]
    Elvin J D. Integrated inward turning inlets and nozzles for hypersonic air vehicles: US 2007/0187550 A1[P]. 2007-08-16.
    [74]
    Smith T R, Bowcutt K G. Integrated hypersonic inlet design: USA, 08256706 B1[P]. 2012-09-04.
    [75]
    Wang J F, Cai J S, Liu C Z, et al. Aerodynamic configuration integration design of hypersonic cruise aircraft with inward-turning inlets[J]. Chinese Journal of Aeronautics, 2017, 30(4):1349-1362. doi: 10.1016/j.cja.2017.05.002
    [76]
    南向军, 张堃元, 金志光.乘波前体两侧高超声速内收缩进气道一体化设计[J].航空学报, 2012, 33(8):1417-1426. http://d.old.wanfangdata.com.cn/Periodical/hkxb201208008

    Nan X J, Zhang K Y, Jin Z G. Integrated design of waverider forebody and lateral hypersonic inward turning inlets[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1417-1426. http://d.old.wanfangdata.com.cn/Periodical/hkxb201208008
    [77]
    向先宏.基于三维内收缩进气道的高超声速飞行器一体化概念设计[D].南京: 南京航空航天大学, 2011.

    Xiang X H. Conceptual design of an integrative hypersonic vehicle based on 3D inward-turning inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
    [78]
    向先宏, 程克明, 王成鹏.基于类咽式进气道的高超声速飞行器一体化设计[J].宇航学报, 2012, 33(1):19-26. doi: 10.3873/j.issn.1000-1328.2012.01.003

    Xiang X H, Cheng K M, Wang C P. Integrative design of airbreathing hypersonic vehicle based on sim-Jaws inlet[J]. Journal of Astronautics, 2012, 33(1):19-26. doi: 10.3873/j.issn.1000-1328.2012.01.003
    [79]
    李永洲, 张堃元.基于马赫数分布可控曲面外/内锥形基准流场的前体/进气道一体化设计[J].航空学报, 2015, 36(1):289-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201501023

    Li Y Z, Zhang K Y. Integrated design of forebody and inlet based on external and internal conical basic flow field with controlled Mach number distribution surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):289-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201501023
    [80]
    崔凯, 胡守超, 李广利, 等.双旁侧进气高超声速飞机概念设计与评估[J].中国科学:技术科学, 2013, 43(10):1085-1093. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201310004
    [81]
    Bowcutt K G, Smith T R, Kothari A P, et al. The hypersonic space and global transportation system: a concept for routine and affordable access to space[R]. AIAA-2011-2295, 2011.
    [82]
    Langener T, Steelant J, Roncioni P, et al. Preliminary performance analysis of the LAPCAT-MR2 by means of nose-to-tail computations[R]. AIAA-2012-5872, 2012.
    [83]
    向先宏, 钱战森.吸气式高超声速飞行器机体/推进一体化设计技术研究进展及分类对比分析[J].推进技术, 2018, 39(10):2207-2218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201810006

    Xiang X H, Qian Z S. An overview and development analysis of air-breathing hypersonic airframe/propulsion integrative design technology[J]. Journal of Propulsion Technology, 2018, 39(10):2207-2218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201810006
    [84]
    Starkey R P, Lewis M J. Simple analytical model for parametric studies of hypersonic waveriders[J]. Journal of Spacecraft and Rockets, 1999, 36(4):516-523. doi: 10.2514/3.27194
    [85]
    Takashima N, Lewis M J. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration[R]. AIAA-1994-0380, 1994.
    [86]
    Jones K D, Sobieczky H, Seebass A R, et al. Waverider design for generalized shock geometries[J]. Journal of Spacecraft and Rockets, 1995, 32(6):957-963. doi: 10.2514/3.26715
    [87]
    Kontogiannis K, Taylor N, Sóbester A. Parametric geometry models for hypersonic aircraft: integrated external inlet compression[R]. AIAA-2016-0915, 2016.
    [88]
    陈小庆, 侯中喜, 何烈堂, 等.吻切锥乘波构型优化设计与分析[J].国防科技大学学报, 2007, 29(4):12-16. doi: 10.3969/j.issn.1001-2486.2007.04.003

    Chen X Q, Hou Z X, He L T, et al. Optimized design and analyze of osculating cone waverider[J]. Journal of National University of Defense Technology, 2007, 29(4):12-16. doi: 10.3969/j.issn.1001-2486.2007.04.003
    [89]
    王卓, 钱翼稷.乘波机外形设计[J].北京航空航天大学学报, 1999, 25(2):180-183. doi: 10.3969/j.issn.1001-5965.1999.02.014

    Wang Z, Qian Y J. Waverider configuration design[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(2):180-183. doi: 10.3969/j.issn.1001-5965.1999.02.014
    [90]
    鲍文, 姚照辉.综合离心力/气动力的升力体高超声速飞行器纵向运动建模研究[J].宇航学报, 2009, 30(1):128-133, 144. doi: 10.3873/j.issn.1000-1328.2009.00.023

    Bao W, Yao Z H. Study on longitudinal modeling for integrated centrifugal/aero force lifting-body hypersonic vehicles[J]. Journal of Astronautics, 2009, 30(1):128-133, 144. doi: 10.3873/j.issn.1000-1328.2009.00.023
    [91]
    肖洪, 吴丁毅, 刘振侠, 等.两种乘波前体/进气道一体化设计与性能研究[J].哈尔滨工业大学学报, 2009, 41(7):150-154. doi: 10.3321/j.issn:0367-6234.2009.07.034

    Xiao H, Wu D Y, Liu Z X, et al. Integrated design and performance research of waverider forebody/inlet[J]. Journal of Harbin Institute of Technology, 2009, 41(7):150-154. doi: 10.3321/j.issn:0367-6234.2009.07.034
    [92]
    唐硕, 祝强军.吸气式高超声速飞行器动力学建模研究进展[J].力学进展, 2011, 41(2):187-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201102005

    Tang S, Zhu Q J. Research progresses on flight dynamic modeling of airbreathing hypersonic vehicles[J]. Advances in Mechanics, 2011, 41(2):187-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201102005
    [93]
    张杰, 王发民.乘波器的参数化设计研究[J].空气动力学学报, 2008, 26(1):115-118. doi: 10.3969/j.issn.0258-1825.2008.01.022

    Zhang J, Wang F M. Parametric waveriders design method study[J]. Acta Aerodynamica Sinica, 2008, 26(1):115-118. 〖WX)〗〖LL〗〖WX(4.5mm, 75.5mm〗 doi: 10.3969/j.issn.0258-1825.2008.01.022
    [94]
    You Y C, Zhu C X, Guo J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody[R]. AIAA-2009-7421, 2009.
    [95]
    Li Y Q, An P, Pan C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody[R]. AIAA-2014-3229, 2014.
    [96]
    Gollan R J, Smart M K. Design of modular shape-transition inlets for a conical hypersonic vehicle[J]. Journal of Propulsion & Power, 2010, 29(4):1-15. http://cn.bing.com/academic/profile?id=2eaab6ef73d0c179a6dd9644703dcbb8&encoded=0&v=paper_preview&mkt=zh-cn
    [97]
    李怡庆, 周驯黄, 朱呈祥, 等.曲锥前体/三维内转进气道一体化设计与分析[J].航空动力学报, 2018, 33(1):87-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201801011

    Li Y Q, Zhou X H, Zhu C X, et al. Integration design and analysis for curved conical forebody and three dimensional inward turning inlet[J]. Journal of Aerospace Power, 2018, 33(1):87-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201801011
    [98]
    肖尧, 崔凯, 李广利, 等.全乘波背部进气高超声速飞行器构型概念研究[C].第十八届全国激波与激波管学术会议, 北京, 2018.
    [99]
    周扬, 黄国平.匹配飞行器前体的高外压缩内乘波进气道设计[C].第十五届推进系统气动热力学专业学术交流会, 杭州, 2015.
    [100]
    乔文友, 余安远, 杨大伟, 等.基于前体激波的内转式进气道一体化设计[J].航空学报, 2018, 39(10):122078. http://d.old.wanfangdata.com.cn/Periodical/hkxb201810005

    Qiao W Y, Yu A Y, Yang D W, et al. Integration design of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):122078. http://d.old.wanfangdata.com.cn/Periodical/hkxb201810005
    [101]
    乔文友, 余安远, 唐伟员.可匹配弹体的三维内收缩式高超声速进气道设计[C].第五届冲压发动机会议, 厦门, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(39)

    Article Metrics

    Article views (578) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return