Jia Yinan, Zhang Qifan, Tong Xiaotong, et al. Effect of the inlet internal compression shock waves on restart characteristics of the hypersonic inlets[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 60-67. doi: 10.11729/syltlx20190031
Citation: Jia Yinan, Zhang Qifan, Tong Xiaotong, et al. Effect of the inlet internal compression shock waves on restart characteristics of the hypersonic inlets[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 60-67. doi: 10.11729/syltlx20190031

Effect of the inlet internal compression shock waves on restart characteristics of the hypersonic inlets

doi: 10.11729/syltlx20190031
  • Received Date: 2019-01-28
  • Rev Recd Date: 2019-04-18
  • Publish Date: 2019-06-25
  • The specific hypersonic inlet models have been tested at Ma=4.0 wind tunnel to enrich the understanding of the effect of expansion waves on the inlet shoulder and the different compression ways on the inlet restart characteristics. The cowl angle and the thickness of the boundary layer have been regarded as the key influence factors. Results show that the expansion waves originated from the shoulder accelerate the local flow velocity and decrease the static pressure, which promotes the separation to move downstream. Thus, the inlet restart capability can be enhanced. And the multiple noncoalesced cowl shock waves can also improve the two-dimensional inlet restart capability. Due to the obvious three-dimensional structure of the separation induced by the swept shock, the inlet restart performance of sidewall-compression inlet differs from that of the cowl compression inlet. For the un-restart inlet caused by aerodynamic throat choke, the sidewall-compression can enhance the inlet restart capability effectively compared to the cowl-compression.
  • loading
  • [1]
    Bowcutt K G. Multidisciplinary optimization of airbreathing hypersonic vehicles[J]. Journal of Propulsion and Power, 2001, 17(6):1184-1190. doi: 10.2514/2.5893
    [2]
    McClinton C R, Hunt J L, Ricketts R H. Airbreathing hypersonic technology vision vehicles and development dreams[R]. AIAA-99-4987, 1999.
    [3]
    Kantrowitz A, Donaldson C D. Preliminary investigation of supersonic diffusers[R]. NACA-ACR-L5D20, 1945.
    [4]
    Kantrowitz A. The formation and stability of normal shock waves in channel flows[R]. NACA-TN-1225, 1947.
    [5]
    Li Z F, Huang B, Yang J M. A novel test of starting characteristics of hypersonic inlets in shock tunnel[R]. AIAA-2011-2308, 2011.
    [6]
    李祝飞, 黄舶, 贾立超, 等.激波风洞中高超声速进气道起动问题实验研究[C]//十四届全国激波与激波管学术会议论文集. 2010.

    Li Z F, Huang B, Jia L C, et al. Starting characteristics of hypersonic inlets in shock tunnel[C]//Proc of the 14th Chinese National Symposium on Shock Waves. 2010.
    [7]
    王成鹏, 程克明.高超进气道临界起动特征[J].航空动力学报, 2008, 23(6):997-1002. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200806005

    Wang C P, Cheng K M. Critical starting characteristics of hypersonic inlets[J]. Journal of Aerospace Power, 2008, 23(6):997-1002. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200806005
    [8]
    Sun B, Zhang K Y. Empirical equation for self-starting limit of supersonic inlets[J]. Journal of Propulsion and Power, 2010, 26(4):874-875. doi: 10.2514/1.46798
    [9]
    Hohn O M, Gülhan A. Experimental investigation on the influence of sidewall compression on the flowfield of a scramjet inlet at Mach 7[R]. AIAA-2011-2350, 2011.
    [10]
    Goldberg T J, Hefner J N. Starting criterion for hypersonic inlets[J]. Journal of Aircraft, 1970, 7(3):275-277. doi: 10.2514/3.44160
    [11]
    Goldberg T J, Hefner J N. Starting phenomena for hypersonic inlet with thick turbulent boundary layers at Mach 6[R]. NASA TN D-6280, 1971.
    [12]
    Van Wie D M, Kwok F T, Walsh R F. Starting characteristics of supersonic inlets[C]. The 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Lake Buena Vista, USA, 1996.
    [13]
    Yue L J, Jia Y N, Xu X, et al. Effect of cowl shock on restart characteristics of simple ramp type hypersonic inlets with thin boundary layers[J]. Aerospace Science and Technology, 2018, 74:72-80. doi: 10.1016/j.ast.2017.12.018
    [14]
    Flock A K, Gülhan A. Experimental investigation of the starting behavior of a three-dimensional scramjet intake[J]. AIAA Journal, 2015, 53(9):2686-2693. doi: 10.2514/1.J053786
    [15]
    岳连捷, 刘红, 徐骁, 等.激波风洞进气道自起动实验方法[C]//第九届全国实验流体力学论文集. 2013.

    Yue L J, Liu H, Xu X, et al. Experimental method for hypersonic inlet self-starting in shock tunnel[C]//Proc of the 9th national conference on experimental fluid mechanics. 2013.
    [16]
    Chapman D R, Kuehn D M, Larson H K. Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition[R]. NACA-TN-3869, 2011.
    [17]
    Trexler C A. Performance of an inlet for an integrated scramjet concept[J]. Journal of Aircraft, 2015, 11(9):589-591. doi: 10.2514-3.60393/
    [18]
    Trexler C A. Inlet performance of the integrated langley scramjet module[C]. The 11th Propulsion Conference. Anaheim, USA, 1975.
    [19]
    袁化成, 梁德旺.高超声速侧压式模型进气道不起动特性分析[J].南京航空航天大学学报, 2004, 36(6):683-687. doi: 10.3969/j.issn.1005-2615.2004.06.003

    Yuan H C, Liang D W. Characteristic analysis of unstart performance for hypersonic side-wall inlet model[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2004, 36(6):683-687. doi: 10.3969/j.issn.1005-2615.2004.06.003
    [20]
    向安宇, 岳连捷, 肖雅彬, 等.侧压式超燃进气道流场特性研究[J].力学与实践, 2007, 29(3):7-10. doi: 10.3969/j.issn.1000-0879.2007.03.002

    Xiang A Y, Yue L J, Xiao Y B, et al. Investigation on sidewall compression scramjet inlet[J]. Mechanics in Engineering, 2007, 29(3):7-10. doi: 10.3969/j.issn.1000-0879.2007.03.002
    [21]
    龚鹏, 岳连捷, 肖雅斌, 等.带中心支板侧压进气道流场特性研究[J].实验流体力学, 2008, 22(1):31-35. doi: 10.3969/j.issn.1672-9897.2008.01.007

    Gong P, Yue L J, Xiao Y B, et al. Investigation on flow pattern of sidewall compression scramjet inlet with single central strut[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1):31-35. doi: 10.3969/j.issn.1672-9897.2008.01.007
    [22]
    Zheltovodov A A, Maksimov A I, Shevchenko A M. Topology of three-dimensional separation under the conditions of symmetric interaction of crossing[J]. Thermophysics and Aeromechanics, 1998, 5(3):293-312.
    [23]
    Prandtl L. Über Flüßigkeitsbewegung bei sehr kleiner Reibung[C]. The Verhandlungen des dritten internationalen Mathematiker-Kongresses. Heidelberg, Germany, 1904.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (240) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return