Hou Zihao, Yang Jianting, Zhu Yujian, et al. Self-ignition caused by an imploding arc-shaped shock wave and the subsequent propagation of combustion[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 10-17. doi: 10.11729/syltlx20190043
Citation: Hou Zihao, Yang Jianting, Zhu Yujian, et al. Self-ignition caused by an imploding arc-shaped shock wave and the subsequent propagation of combustion[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 10-17. doi: 10.11729/syltlx20190043

Self-ignition caused by an imploding arc-shaped shock wave and the subsequent propagation of combustion

doi: 10.11729/syltlx20190043
  • Received Date: 2019-01-31
  • Rev Recd Date: 2019-04-21
  • Publish Date: 2019-10-25
  • The self-ignition induced by an imploding arc-shaped shock wave and the subsequent propagation of the combustion waves are investigated by shock tube experiments and quasi-one-dimensional numerical simulations. A carefully designed transitional tube section is employed to smoothly transform the incident planar shock wave to an imploding arc-shaped shock wave. It is found that the non-uniform gradient environment behind the imploding shock consists of three different regions that are respectively produced by the shock wave propagation in the straight section, the transitional section and the wedge section. With the strengthening of the imploding shock wave, a mild chemical reaction zone with absence of shock waves breaks out at a spot behind the arc shock. The upstream front of the reaction zone moves faster than the Chapman-Jouguet (CJ) detonation speed in the very beginning, and the flow of the reaction products exhibits characteristics of a weak detonation wave. Further analysis indicates that the upstream reaction front is essentially a spontaneous reaction wave instead of a hydrodynamic wave and the moving speed of it is consistent with the reciprocal of the local ignition time gradient. The expandence speed of the reaction zone quickly drops below the CJ speed, accompanying with the emergence of shock waves and a shock-flame complex. The shock-flame complex accelerates and transits to a detonation wave, eventually. Under a certain circumstance and because of the unique induction time gradient environment, the spontaneous reaction wave front may overtake the detonation wave to become the new combustion front. Again, when the speed of the spontaneous wave front drops below the CJ detonation speed, a new detonation wave takes over. In this process, the original detonation wave degenerates to a shock wave propagating in the combustion products.
  • loading
  • [1]
    Liu Y, Wang L, Xiao B G, et al. Hysteresis phenomenon of the oblique detonation wave[J]. Combustion and Flame, 2018, 192:170-179. doi: 10.1016/j.combustflame.2018.02.010
    [2]
    Yao S B, Liu M, Wang J P. Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine[J]. Combustion Science and Techno-logy, 2015, 187(12):1867-1878. doi: 10.1080/00102202.2015.1067202
    [3]
    Lee J H S. The detonation phenomenon[M]. Camridge:Cambridge University Press, 2008.
    [4]
    Hanson R K, Davidson D F. Recent advances in laser absorption and shock tube methods for studies of combustion chemistry[J]. Progress in Energy and Combustion Science, 2014, 44(5):103-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=32a48adc67662fe720c9b40098405349
    [5]
    Kéromnès A, Metcalfe W K, Heufer K A, et al. An experi-mental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures[J]. Combustion and Flame, 2013, 160(6):995-1011. doi: 10.1016/j.combustflame.2013.01.001
    [6]
    Hashemi H, Christensen J M, Gersen S, et al. Hydrogen oxidation at high pressure and intermediate temperatures:Experiments and kinetic modeling[J]. Proceedings of the Combustion Institute, 2015, 35(1):553-560. doi: 10.1016/j.proci.2014.05.101
    [7]
    Koroglu B, Pryor O M, Lopez J, et al. Shock tube ignition delay times and methane time-histories measurements during excess CO2 diluted oxy-methane combustion[J]. Combustion and flame, 2016, 164:152-163. doi: 10.1016/j.combustflame.2015.11.011
    [8]
    Boeck L R, Mével R, Sattelmayer T. Models for shock-induced ignition evaluated by detailed chemical kinetics for hydrogen/air in the context of deflagration-to-detonation transition[J]. Journal of Loss Prevention in the Process Industries, 2017, 49:731-738. doi: 10.1016/j.jlp.2017.04.018
    [9]
    Chatelain K, Mével R, Menon S, et al. Ignition and chemical kinetics of acrolein-oxygen-argon mixtures behind reflected shock waves[J]. Fuel, 2014, 135:498-508. doi: 10.1016/j.fuel.2014.07.004
    [10]
    Yamashita H, Kasahara J, Sugiyama Y, et al. Visualization study of ignition modes behind bifurcated-reflected shock waves[J]. Combustion and Flame, 2012, 159(9):2954-2966. doi: 10.1016/j.combustflame.2012.05.009
    [11]
    Grogan K P, Ihme M. Regimes describing shock boundary layer interaction and ignition in shock tubes[J]. Proceedings of the Combustion Institute, 2017, 36(2):2927-2935. doi: 10.1016/j.proci.2016.06.078
    [12]
    Gelfand B E, Khomik S V, Bartenev A M, et al. Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture[J]. Shock Waves, 2000, 10(3):197-204. doi: 10.1007/s001930050007
    [13]
    Bartenev A M, Khomik S V, Gelfand B E, et al. Effect of reflection type on detonation initiation at shock-wave focusing[J]. Shock Waves, 2000, 10(3):205-215. doi: 10.1007/s001930050008
    [14]
    滕宏辉, 王春, 邓博, 等.可燃气体中激波聚焦的点火特性[J].力学学报, 2007, 39(2):171-180. doi: 10.3321/j.issn:0459-1879.2007.02.005

    Teng H H, Wang C, Deng B, et al. Ignition characteristics of the shock wave focusing in combustive gases[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(2):171-180. doi: 10.3321/j.issn:0459-1879.2007.02.005
    [15]
    何立明, 荣康, 曾昊, 等.激波聚焦及起爆爆震波的研究进展[J].推进技术, 2015, 36(10):1441-1458. http://d.old.wanfangdata.com.cn/Conference/8170218

    He L M, Rong K, Zeng H, et al. Advances in shock wave focusing and induced detonation initiation[J]. Journal of Propulsion Technology, 2015, 36(10):1441-1458. http://d.old.wanfangdata.com.cn/Conference/8170218
    [16]
    Zhai Z G, Liu C L, Qin F H, et al. Generation of cylindrical converging shock waves based on shock dynamics theory[J]. Physics of Fluids, 2010, 22(4):041701 doi: 10.1063/1.3392603
    [17]
    Yang J T, Zhu Y J, Yang J M. Self-ignition induced by cylindrically imploding shock adapting to a convergent channel[J]. Physics of Fluids, 2017, 29(3):031702. doi: 10.1063/1.4979135
    [18]
    Zel'Dovich Y B, Librovich V B, Makhviladze G M, et al. On the onset of detonation in a nonuniformly heated gas[J]. Journal of Applied Mechanics and Technical Physics, 1970, 11(2):264-270. http://cn.bing.com/academic/profile?id=3e411e70b62533e37b8fa81d5a1181e2&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    Oran E S, Weber J W Jr, Stefaniw E I, et al. A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model[J]. Combustion and Flame, 1998, 113(1-2):147-163. doi: 10.1016/S0010-2180(97)00218-6
    [20]
    Brown P N, Byrne G D, Hindmarsh A C. VODE:a variable coefficient ODE solver[J]. SIAM Journal of Scientific and Statistical Computing, 1989, 10(5):1038-1051. doi: 10.1137/0910062
    [21]
    Shi X F, Zhu Y J, Yang J M, et al. Mach stem deformation in pseudo-steady shock wave reflections[J]. Journal of Fluid Mechanics, 2019, 861:407-421. doi: 10.1017/jfm.2018.920
    [22]
    Kapila A K, Schwendeman D W, Quirk J J, et al. Mechanisms of detonation formation due to a temperature gradient[J]. Combustion Theory and Modelling, 2002, 6(4):553-594. doi: 10.1088/1364-7830/6/4/302
    [23]
    Kassoy D R. The Zeldovich spontaneous reaction wave propa-gation concept in the fast/modest heating limits[J]. Journal of Fluid Mechanics, 2016, 791:439-463. doi: 10.1017/jfm.2015.756
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (109) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return