Volume 34 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
XIANG Longkai, YA Yuchen, NIE Xiaokang, et al. Measurements of laminar burning velocity and analysis of its field for the laminar premixed methane-air flames using the Bunsen burner method and schlieren technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 25-32. doi: 10.11729/syltlx20190087
Citation: XIANG Longkai, YA Yuchen, NIE Xiaokang, et al. Measurements of laminar burning velocity and analysis of its field for the laminar premixed methane-air flames using the Bunsen burner method and schlieren technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 25-32. doi: 10.11729/syltlx20190087

Measurements of laminar burning velocity and analysis of its field for the laminar premixed methane-air flames using the Bunsen burner method and schlieren technique

doi: 10.11729/syltlx20190087
  • Received Date: 2019-07-01
  • Rev Recd Date: 2019-10-21
  • Publish Date: 2020-02-25
  • The laminar burning velocity is a key parameter for determining the combustion propagation model and verifying the chemical reaction mechanism. In this paper, the Bunsen burner experiment system and the schlieren experiment system are built to carry out research on the laminar premixed combustion characteristics of methane. The laminar burning velocity and the flame external field of methane/nitrogen/air were measured by the Bunsen burner method and the schlieren technique respectively, and the effects of equivalence ratio (ER) and nitrogen blending on the laminar burning velocity and the external field of the flame were investigated. The following conclusions are obtained through experiments: the equivalence ratio has an important influence on the laminar premixed combustion characteristics of the methane; and as the equivalence ratio increases, the laminar burning velocity increases first and then decreases, and the cone flame height decreases first and then increases; as well the external field of the flame starts to stabilize gradually. Nitrogen blending plays a negative role in the laminar burning velocity variation, at the same fime, the more nitrogen is blended, the more the laminar burning velocity decreases. The flame height increases with the increase of N2 doping ratio, but the external flow field of the flame becomes more disordered and difficult to stabilize.
  • loading
  • [1]
    BP Statistical Review of World Energy 2019: an unsustainable path[EB/OL]. https://www.bp.com/content/dam/bp/country-sites/zh_cn/china/home/reports/bp-energy-outlook/2019/2019eobook.pdf.
    [2]
    DIRRENBERGER P, GALL H L, BOUNACEUR R, et al. Measurements of laminar flame velocity for components of natural gas[J]. Energy and Fuels, 2011, 25(9):3875-3884. doi: 10.1021/ef200707h
    [3]
    LAMOUREUX N, PAILLARD C E. Natural gas ignition delay times behind reflected shock waves: Application to modelling and safety[J]. Shock Waves, 2003, 13(1):57-68. http://cn.bing.com/academic/profile?id=5c06da8d042dc570b6d4990d722ad474&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    YANG W, LIU G, GONG Y, et al. Microbial alteration of natural gas in Xinglongtai field of the Bohai Bay Basin, China[J]. Chinese Journal of Geochemistry, 2012, 31(1):55-63. doi: 10.1007/s11631-012-0549-3
    [5]
    IBARRETA, ALFONSO F, SUNG C J. Flame temperature and location measurements of sooting premixed Bunsen flames by rainbow schlieren deflectometry[J]. Applied Optics, 2005, 44(17): 3565-3575. doi: 10.1364/AO.44.003565
    [6]
    DUNN-RANKIN D, WEINBERG F. Location of the schlieren image in premixed flames: axially symmetrical refractive index fields[J]. Combustion and Flame, 1998, 113(3):303-311. doi: 10.1016/S0010-2180(97)00233-2
    [7]
    ZHANG M, WANG J, XIE Y, et al. Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames[J]. Experimental Thermal and Fluid Science, 2014, 52: 288-296. doi: 10.1016/j.expthermflusci.2013.10.002
    [8]
    VEGA E V, LEE K Y. An experimental study on laminar CH4/O2/N2 premixed flames under an electric field[J]. Journal of Mechanical Science and Technology, 2008, 22(2):312-319. doi: 10.1007/s12206-007-1043-4
    [9]
    GU X, LI Q, HUANG Z. Laminar burning characteristics of diluted n-butanol/air mixtures[J]. Combustion Science and Technology, 2011, 183(12):1360-1375. doi: 10.1080/00102202.2011.600275
    [10]
    周昊, 吕小亮, 李清毅, 等.应用背景纹影技术的温度场测量[J].中国电机工程学报, 2011, 31(5):63-67. http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201105012.htm

    ZHOU H, LYU X L, LI Q Y, et al. Temperature measurements using the background oriented schlieren technique[J]. Proceedings of the CSEE, 2011, 31(5): 63-37. http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201105012.htm
    [11]
    张杨竣, 逯红梅, 王启, 等.天然气法向火焰传播速度仿真与实验测试[J].煤气与热力, 2016, 36(5):17-22. doi: 10.3969/j.issn.1000-4416.2016.05.005

    ZHANG Y J, LU H M, WANG Q, et al. Simulation and experimental test of normal flame propagation velocity of natural gas[J]. Gas & Heat, 2016, 36(5):17-22. doi: 10.3969/j.issn.1000-4416.2016.05.005
    [12]
    HU X, YU Q, LIU J, et al. Investigation of laminar flame speeds of CH4/O2/CO2 mixtures at ordinary pressure and kinetic simulation[J]. Energy, 2014, 70: 626-634. doi: 10.1016/j.energy.2014.04.029
    [13]
    DONG C, ZHOU Q, ZHAO Q, et al. Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures. Fuel, 2009, 88(10): 1858-1863. doi: 10.1016/j.fuel.2009.04.024
    [14]
    ZHEN H, LEUNG C, CHEUNG C, et al. Characterization of biogas-hydrogen premixed flames using Bunsen burner[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13292-13299. doi: 10.1016/j.ijhydene.2014.06.126
    [15]
    王金华, 方宇, 黄佐华, 等.利用高速摄影纹影法研究天然气高压喷射射流特性[J].内燃机学报, 2007, 25(6): 500-504. doi: 10.3321/j.issn:1000-0909.2007.06.004

    WANG J H, FANG Y, HUANG Z H, et al. Experimental study of the jet characteristics of high pressure injected natural gas using high speed photograph method[J]. Transactions of CSICE, 2007, 25(6): 500-504. doi: 10.3321/j.issn:1000-0909.2007.06.004
    [16]
    李华, 杨臧健, 吴敏, 等.纹影系统中物平面的选择与刀口的设置[J].实验流体力学, 2011, 25(3):91-96. doi: 10.3969/j.issn.1672-9897.2011.03.020

    LI H, YANG Z J, WU M, et al. Selection of object plane and arrangement of knife edge for a schlieren system[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):91-96. doi: 10.3969/j.issn.1672-9897.2011.03.020
    [17]
    REN F, CHU H, XIANG L, et al. Effect of hydrogen addition on the laminar premixed combustion characteristics the main components of natural gas[J]. Journal of the Energy Institute, 2019, 92(4): 1178-1190. doi: 10.1016/j.joei.2018.05.011
    [18]
    XIANG L, CHU H, REN F, et al. Numerical analysis of the effect of CO2 on combustion characteristics of laminar premixed methane/air flames[J]. Journal of the Energy Institute, 2019, 92(5): 1487-1501. doi: 10.1016/j.joei.2018.06.018
    [19]
    王根娟, 杨臧健, 孟晟, 等.背景纹影定量化在层流轴对称火焰温度场测量中的应用研究[J].实验流体力学, 2015, 30(2):103-110. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10925.shtml

    WANG G J, YANG Z J, MENG S, et al. Application of quantitative background oriented schlieren in laminar axisymmetric flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2015, 30(2):103-110. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10925.shtml
    [20]
    李兴虎.氮气稀释丙烷空气混合气的层流火焰速度测量[J].燃烧科学与技术, 2001, 7(4):288-289. doi: 10.3321/j.issn:1006-8740.2001.04.018

    LI X H. Mesasurement of laminar burning velocity on diluted air-propane mixture[J]. Journal of Combustion Science and Technology, 2001, 7(4):288-289. doi: 10.3321/j.issn:1006-8740.2001.04.018
    [21]
    HE Y, WANG Z, YANG L, et al. Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation[J]. Fuel, 2012, 95:206-213. doi: 10.1016/j.fuel.2011.09.056
    [22]
    MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1):3-17. doi: 10.1016/0894-1777(88)90043-X
    [23]
    KEE R J, RUPLEY F M, MILLER J A. Chemkin-Ⅱ: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics[R]. Sandia National Laboratories Report SAND89-8009B, 1993.
    [24]
    Chemical-Kinetic Mechanisms for Combustion Applications[EB/OL]. http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
    [25]
    DIRRENBERGER P, GALL H L, BOUNACEUR R, et al. Measurements of laminar burning velocities above atmospheric pressure using the heat flux method, application to the case of n-pentane[J]. Energy & Fuels, 2015, 29(1): 398-404. http://cn.bing.com/academic/profile?id=a82787013edc4093df3e44050419fcdf&encoded=0&v=paper_preview&mkt=zh-cn
    [26]
    ZAHEDI P, YOUSEFI K. Effects of pressure and carbon dioxide, hydrogen and nitrogen concentration on laminar burning velocities and NO formation of methane-air mixtures[J]. Journal of Mechanical Science and Technology, 2014, 28(1): 377-386. doi: 10.1007/s12206-013-0970-5
    [27]
    MAZAS A N, FIORINA B, LACOSTE D A, et al. Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames[J]. Combustion and Flame, 2011, 158(12): 2428-2440. doi: 10.1016/j.combustflame.2011.05.014
    [28]
    NILSSON E J K, VAN SPRANG A, LARFELDT J, et al. The comparative and combined effects of hydrogen addition on the laminar burning velocities of methane and its blends with ethane and propane[J]. Fuel, 2017, 189:369-376. doi: 10.1016/j.fuel.2016.10.103
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (506) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return