Volume 34 Issue 5
Oct.  2020
Turn off MathJax
Article Contents
GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, et al. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. doi: 10.11729/syltlx20190113
Citation: GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, et al. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. doi: 10.11729/syltlx20190113

The compliance verification of thermodynamic flowfield in the large icing wind tunnel

doi: 10.11729/syltlx20190113
  • Received Date: 2019-09-10
  • Rev Recd Date: 2019-11-15
  • Publish Date: 2020-10-25
  • The compliance of thermodynamic flowfield in the large icing wind tunnel is the precondition for the airworthiness application of the large icing wind tunnel. In order to verify the compliance of the thermodynamic flowfield in the CARDC icing wind tunnel, a verification method is established firstly, and then a verification test is conducted for the main test section. The influences of the test section total temperature, velocity and the nozzle dry air jet flow on the spatial uniformity and temporal stability of thermodynamic flowfield are examined, and the correction relationship of the test section total temperature is obtained. Finally, the thermodynamic flowfield operating envelop is built. Results show that decreased test section total temperature and increased test section velocity could reduce the spatial uniformity of the thermodynamic flowfield in the test section for the actual refrigeration system of the CARDC icing wind tunnel, but have no obvious effects on the temporal stability of the thermodynamic flowfield. The nozzle dry air jet flow could increase the test section total temperature, while it has no significant influence on the spatial uniformity and temporal stability of the thermodynamic flowfield. The quality of the thermodynamic flowfield of the CARDC icing wind tunnel in the main test section almost meets the requirement of SAE ARP 5905-2003 under the main test condition.
  • loading
  • [1]
    林贵平, 卜雪琴, 申晓斌, 等.飞机结冰与防冰技术[M].北京:北京航空航天大学出版社, 2016.
    [2]
    易贤, 王斌, 李伟斌, 等.飞机结冰冰形测量方法研究进展[J].航空学报, 2017, 38(2):13-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201702002

    YI X, WANG B, LI W B, et al. Research progress on ice shape measurement approaches for aircrafticing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):13-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201702002
    [3]
    郭向东, 王梓旭, 李明, 等.结冰风洞中液滴过冷特性数值研究[J].航空学报, 2017, 38(10):76-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201710008

    GUO X D, WANG Z X, LI M, et al. Numerical study of supercooling characteristics of droplet in icing windtunnel[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):76-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201710008
    [4]
    王梓旭, 沈浩, 郭龙, 等. 3 m×2 m结冰风洞云雾参数校测方法[J].实验流体力学, 2018, 32(2):61-67. http://www.syltlx.com/CN/abstract/abstract11096.shtml

    WANG Z X, SHEN H, GUO L, et al. Cloud calibration method of 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2):61-67. http://www.syltlx.com/CN/abstract/abstract11096.shtml
    [5]
    IRVINE T, KEVDZIJA S, SHELDON D, et al. Overview of the icing and flow quality improvements program for the NASA-Glenn Icing Research Tunnel[R]. AIAA-2001-0229, 2001.
    [6]
    GONSALEZ J C, ALLEN ARRINGTON E, CURRY M R Ⅲ. Flow quality surveys of the NASA Glenn Icing Research Tunnel (2000 tests)[R]. AIAA-2001-0232, 2001.
    [7]
    GONSALEZ J C, ALLEN ARRINGTON E, CURRY M R Ⅲ. Thermal calibration of the NASA Glenn Icing Research Tunnel (2000 tests)[R]. AIAA-2001-0233, 2001.
    [8]
    ALLEN ARRINGTON E, GONSALEZ J C. Improvements to the total temperature calibration of the NASA Glenn Icing Research Tunnel[R]. AIAA-2005-4276, 2005.
    [9]
    OLDENBURG J R, IDE R F, DEL ROSO R L, et al. Improvements to the NASA Glenn Icing Research Tunnel's air temperature measurement system[R]. AIAA-2006-1222, 2006.
    [10]
    PASTOR-BARSI C M, ALLEN ARRINGTON E. Aero-thermal calibration of the NASA Glenn Icing Research Tunnel (2012 test)[R]. AIAA-2012-2934, 2012.
    [11]
    STEEN L E, VAN ZANTE J F, BROEREN A P, et al. Flow quality surveys in the settling chamber of the NASA Glenn Icing Research Tunnel (2011 tests)[R]. AIAA-2012-2935, 2012.
    [12]
    VECCHIONE L, DE MATTEIS P P. An overview of the CIRA Icing Wind Tunnel[R]. AIAA-2003-0900, 2003.
    [13]
    ESPOSITO B M, RAGNI A, FERRIGNO F, et al. Cloud calibration update of the CIRAIcing Wind Tunnel[R]. SAE 2003-01-2132, 2003.
    [14]
    CHINTAMANI S H, BELTER D L. Design features and flow qualities of the Boeing research aerodynamic icing tunnel[R]. AIAA-1994-0540, 1994.
    [15]
    IRANI E, AL-KHALIL K. Calibration and recent upgrades to the Cox Icing Wind Tunnel[R]. AIAA-2008-0437, 2008.
    [16]
    AC-9C Aircraft Icing Technology Committee. SAE ARP 5905-2003, Calibration and acceptance of icing wind tunnels[S]. Warrendale, PA: SAE International, 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (210) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return