Volume 35 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
HU Shangwei, YIN Kewei, TU Xiaobo, et al. Measurement of CO concentration in flat flame based on mid-infrared absorption spectroscopy[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 60-66. doi: 10.11729/syltlx20190126
Citation: HU Shangwei, YIN Kewei, TU Xiaobo, et al. Measurement of CO concentration in flat flame based on mid-infrared absorption spectroscopy[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 60-66. doi: 10.11729/syltlx20190126

Measurement of CO concentration in flat flame based on mid-infrared absorption spectroscopy

doi: 10.11729/syltlx20190126
  • Received Date: 2020-01-26
  • Rev Recd Date: 2020-11-18
  • Publish Date: 2021-02-25
  • CO is one of the main products of hydrocarbon combustion. Accurate measurement of CO concentration at the scramjet outlet is an important basis for evaluating the combustion efficiency of the hydrocarbon fuel. Compared with the near infrared band, the CO absorption spectrum in the mid infrared band has the advantages of stronger absorption, rich spectral lines, relatively isolated spectral lines and no interference from other gases. Based on the mid infrared absorption spectrum technology, this paper studies the mid infrared spectrum characteristics of CO, selects the characteristic spectrum which is suitable for the measurement of CO in the high temperature flow field, designs and builds the CO concentration detection system in the high temperature flow field, carries out the CO measurement verification under different equivalence ratios of the plane flame, realizes the CO measurement of the high temperature flow field at the exit of a scramjet, and reflects the changes of concentration and temperature of CO during the combustion of aviation kerosene, thus providing powerful research means and abundant experimental data for the study of combustion and flow mechanism of the scramjet.
  • loading
  • [1]
    许琳, 王高, 吕国义, 等. 超声测温技术在模拟航空发动机燃烧室温度测量中的应用[J]. 测试技术学报, 2019, 33(2): 178-184. doi: 10.3969/j.issn.1671-7449.2019.02.016

    XU L, WANG G, LYU G Y, et al. Ultrasonic temperature measurement technology for simulated aero-engine combustion Chambers[J]. Journal of Test and Measurement Technology, 2019, 33(2): 178-184. doi: 10.3969/j.issn.1671-7449.2019.02.016
    [2]
    周蕊燕, 贾译钧. 浅析航空燃烧室及其发展趋势[J]. 山东工业技术, 2016(5): 214. doi:10.16640/j.cnki.37-1222/t.2016.05. 201
    [3]
    胡志云, 叶景峰, 张振荣, 等. 航空发动机地面试验激光燃烧诊断技术研究进展[J]. 实验流体力学, 2018, 32(1): 33-42. doi: 10.11729/syltlx20170135

    HU Z Y, YE J F, ZHANG Z R, et al. Development of laser combustion diagnostic techniques for ground aero-engine testing[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 33-42. doi: 10.11729/syltlx20170135
    [4]
    SPEARRIN R M, JEFFRIES J B, HANSON R K. Mid-infrared absorption sensor for measurements of CO and CO2 in propulsion flows[R]. AIAA 2014-0390, 2014. doi: 10.2514/6.2014-0390
    [5]
    WAKEFIELD S, TOM B A, SELL B C, et al. Development of a mid-IR laser diagnostic for combustion efficiency[R]. AIAA 2014-1356, 2014. doi: 10.2514/6.2014-1356
    [6]
    BUSA K M, BROWN M S, GRUBER M, et al. Common-path measurement of H2O, CO, and CO2 via TDLAS for combustion progress in a hydrocarbon-fueled scramjet[R]. AIAA 2016-0659, 2016. doi: 10.2514/6.2016-0659
    [7]
    张伯昆. 基于TDLAS的环境CO红外激光光谱监测方法研究[D]. 合肥: 合肥工业大学, 2012.

    ZHANG B K. Study on infrared laser spectrum monitoring method of environmental CO based on TDLAS[D]. Hefei: Hefei University of technology, 2012.
    [8]
    邢昆明. 基于TDLAS技术检测卷烟主流烟气中CO和CO2及抽吸耗氧量[D]. 合肥: 中国科学技术大学, 2017.

    XING K M. Detection of CO and CO2 in mainstream cigarette smoke based on TDLAS technology and oxygen consumption by suction[D]. Hefei: University of Science and Technology of China, 2017.
    [9]
    张保龙. 基于TDLAS的CO浓度检测系统的研究[D]. 西安: 西安科技大学, 2019.

    ZHANG B L. Research on CO concentration monitoring system based on TDLAS[D]. Xi'an: Xi'an University of Science and Technology, 2019.
    [10]
    SHAO L G, FANG B, ZHENG F, et al. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3μm DFB laser[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 222: 117118. doi: 10.1016/j.saa.2019.05.023
    [11]
    许婷. 利用可调谐半导体激光吸收光谱测量高温火焰中的CO浓度[D]. 杭州: 浙江大学, 2011.

    XU T. Measurement of CO concentration in high temperature flame by tunable semiconductor laser absorption spectroscopy[D]. Hangzhou: Zhejiang University, 2011.
    [12]
    彭于权. 中红外激光光谱燃烧场CO和NO污染物浓度测量[D]. 合肥: 中国科学技术大学, 2018.

    PENG Y Q. Measurement of CO and NO concentration in combustion field of mid infrared laser spectrum[D]. Hefei: University of Science and Technology of China, 2018.
    [13]
    陈允魁. 红外吸收光谱法及其应用[M]. 上海: 上海交通大学出版社, 1993.
    [14]
    吴静静. 基于可调谐激光吸收光谱技术的温度测量方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2018.

    WU J J. Research on temperature measurement method base on tunable diode laser absorption spectroscopy technology[D]. Harbin: Harbin University of Science and Technology, 2018.
    [15]
    GORDON I E, ROTHMAN L S, HILL C. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69. doi: 10.1016/j.jqsrt.2010.01.027
    [16]
    聂伟, 叶擎昊, 许振宇, 等. Voigt线型两翼拟合非均匀流场吸光度的方法研究[J]. 光谱学与光谱分析, 2017, 37(3): 816-821. doi: 10.3964/j.issn.1000-0593(2017)03-0816-06

    NIE W, YE Q H, XU Z Y, et al. Study on the method of Voigt profiles two wings fitting non-uniform flow field absorbance[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 816-821. doi: 10.3964/j.issn.1000-0593(2017)03-0816-06
    [17]
    符鹏飞, 超星, 侯凌云, 等. 基于TDLAS技术的煤油燃烧温度与组分分布检测[J]. 工程热物理学报, 2019, 40(9): 2176-2182. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201909033.htm

    FU P F, CHAO X, HOU L Y, et al. Measurement of kerosene combustion temperature and component distribution based on TDLAS technology[J]. Journal of Engineering Thermophysics, 2019, 40(9): 2176-2182. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201909033.htm
    [18]
    ZHOU X, LIU X, JEFFRIES J B, et al. Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser[J]. Measurement Science and Technology, 2003, 14(8): 1459-1468. doi: 10.1088/0957-0233/14/8/335
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (344) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return