Volume 34 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
SONG Erzhuang, LEI Qingchun, FAN Wei. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1-11. doi: 10.11729/syltlx20190135
Citation: SONG Erzhuang, LEI Qingchun, FAN Wei. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1-11. doi: 10.11729/syltlx20190135

A review on three-dimensional flame measurements based on tomography

doi: 10.11729/syltlx20190135
  • Received Date: 2019-10-18
  • Rev Recd Date: 2019-12-24
  • Publish Date: 2020-02-25
  • Three-dimensional (3D) measurements for turbulent flame have been long desired in the combustion community. In the past decades, with the advancement in high-speed cameras, high-power lasers and computing algorithms, it becomes possible to achieve 3D combustion measurements with sufficient spatial and temporal resolution. This paper reviews the recent development and applications of such a 3D measurement technology based on tomography, so as to provide valuable references to researchers in this field. This review includes the following four parts:First, the principles and computing algorithms of tomography are introduced and reviewed. Second, the experimental measurement systems involved in the 3D tomographic measurements are classified and summarized. Third, the applications of 3D tomographic measurements are introduced including the tomographic chemiluminescence, tomographic laser-induced fluorescence and tomographic shadowgraph/schlieren. Last, we concludes the review and poses several questions for the potential development of the technique.
  • loading
  • [1]
    KYCHAKOFF G, PAUL P H, VAN CRUYNINGEN I, et al. Movies and 3-D images of flowfields using planar laser-induced fluorescence[J]. Applied Optics, 1987, 26(13): 2498-2500. doi: 10.1364/AO.26.002498
    [2]
    YIP B, LAM J K, WINTER M, et al. Time-resolved three-dimensional concentration measurements in a gas jet[J]. Science, 1987, 235(4793): 1209-1211. doi: 10.1126/science.235.4793.1209
    [3]
    NG R, LEVOY M, BRÉDIF M, et al. Light field photography with a hand-held plenoptic camera[J]. Computer Science Technical Report CSTR, 2005, 2(11): 1-11. http://cn.bing.com/academic/profile?id=91b07568d85e3e2056e7e33d32a4e64c&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    TROLINGER J D, HEAP M P. Coal particle combustion studied by holography[J]. Applied Optics, 1979, 18(11): 1757-1762. doi: 10.1364/AO.18.001757
    [5]
    CHO K Y, SATIJA A, POURPOINT T L, et al. High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion[J]. Applied Optics, 2014, 53(3): 316-326. doi: 10.1364/AO.53.000316
    [6]
    HARKER M, HATTRELL T, LAWES M, et al. Measurements of the three-dimensional structure of flames at low turbulence[J]. Combustion Science, 2012, 184(10-11): 1818-1837. doi: 10.1080/00102202.2012.691775
    [7]
    HULT J, OMRANE A, NYGREN J, et al. Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames[J]. Experiments in Fluids, 2002, 33(2): 265-269. doi: 10.1007/s00348-002-0410-2
    [8]
    HALLS B R, HSU P S, JIANG N, et al. kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator[J]. Optica, 2017, 4(8): 897-902. doi: 10.1364/OPTICA.4.000897
    [9]
    LI T, PAREJA J, FUEST F, et al. Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames[J]. Measurement Science, 2017, 29(1): 015206. http://cn.bing.com/academic/profile?id=0a88792b48a6b907461e1c200351ed12&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    MA L, LEI Q, IKEDA J, et al. Single-shot 3D flame diagnostic based on volumetric laser induced fluorescence (VLIF)[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4575-4583. doi: 10.1016/j.proci.2016.07.050
    [11]
    PAREJA J, JOHCHI A, LI T, et al. A study of the spatial and temporal evolution of auto-ignition kernels using time-resolved tomographic OH-LIF[J]. Proceedings of the Combustion Institute, 2019, 37(2): 1321-1328. https://www.researchgate.net/publication/325928590_A_study_of_the_spatial_and_temporal_evolution_of_auto-ignition_kernels_using_time-resolved_tomographic_OH-LIF
    [12]
    FLOYD J, KEMPF A. Computed tomography of chemilumi-nescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner[J]. Proceedings of the Combustion Institute, 2011, 33(1): 751-758. doi: 10.1016/j.proci.2010.06.015
    [13]
    WORTH N A, DAWSON J R. Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames[J]. Measurement Science, 2012, 24(2): 024013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eacaab5e4056229f8bbf3aa0987cb3c8
    [14]
    LI X, MA L. Volumetric imaging of turbulent reactive flows at kHz based on computed tomography[J]. Optics Express, 2014, 22(4): 4768-4778. doi: 10.1364/OE.22.004768
    [15]
    LI X, MA L. Capabilities and limitations of 3D flame measurements based on computed tomography of chemilumi-nescence[J]. Combustion and Flame, 2015, 162(3): 642-651. doi: 10.1016/j.combustflame.2014.08.020
    [16]
    GRAUER S J, UNTERBERGER A, RITTLER A, et al. Instantaneous 3D flame imaging by background-oriented schlieren tomography[J]. Combustion and Flame, 2018, 196: 284-299. doi: 10.1016/j.combustflame.2018.06.022
    [17]
    ISHINO Y, HAYASHI N, ISHIKO Y, et al. Schlieren 3D-CT reconstruction of instantaneous density distributions of spark-ignited flame kernels of fuel-rich propane-air premixture[C]//ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME International Conference on Nanochannels, Microchannels and Minichannels, Washington D C, USA, 2016.
    [18]
    GONZALEZ R C, WOODS R E.数字图像处理: 第3版[M].阮秋琦, 阮宇智, 译.北京: 电子工业出版社, 2017.
    [19]
    BEST P, CHIEN P, CARANGELO R, et al. Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures[J]. Combustion and Flame, 1991, 85(3-4): 309-318. doi: 10.1016/0010-2180(91)90136-Y
    [20]
    MOHAMAD E J, RAHIM R A, IBRAHIM S, et al. Flame imaging using laser-based transmission tomography[J]. Sensors Actuators A: Physical, 2006, 127(2): 332-339. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210602141/
    [21]
    EMMERMAN P, GOULARD R, SANTORO R, et al. Multiangular absorption diagnostics of a turbulent argon-methane jet[J]. Journal of Energy, 1980, 4(2): 70-77. http://cn.bing.com/academic/profile?id=1f38bba4d0cfe8a58e735c8220783a72&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    SNYDER R, HESSELINK L. Measurement of mixing fluid flows with optical tomography[J]. Optics Letters, 1988, 13(2): 87-89. http://cn.bing.com/academic/profile?id=c9ef19ab823328294b65081d589477be&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    GORDON R, BENDER R, HERMAN G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471-481. http://cn.bing.com/academic/profile?id=6efa7336c2ab05df1af31ea2f6d51c9d&encoded=0&v=paper_preview&mkt=zh-cn
    [24]
    BELKEBIR K, CHAUMET P C, SENTENAC A. Influence of multiple scattering on three-dimensional imaging with optical diffraction tomography[J]. JOSA A, 2006, 23(3): 586-595. doi: 10.1364/JOSAA.23.000586
    [25]
    MAIRE G, DRSEK F, GIRARD J, et al. Experimental demonstration of quantitative imaging beyond Abbe's limit with optical diffraction tomography[J]. Physical Review Letters, 2009, 102(21): 213905. doi: 10.1103/PhysRevLett.102.213905
    [26]
    MOLINARI M, COX S J, BLOTT B H, et al. Comparison of algorithms for non-linear inverse 3D electrical tomography reconstruction[J]. Physiological Measurement, 2002, 23(1): 95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0eaac04ab17c040b076f8d3ab75cc147
    [27]
    MOGHADDAM M, CHEW W C. Nonlinear two-dimensional velocity profile inversion using time domain data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(1): 147-156. doi: 10.1109/36.124225
    [28]
    FANG W. A nonlinear image reconstruction algorithm for electrical capacitance tomography[J]. Measurement Science Technology, 2004, 15(10): 2124. doi: 10.1088/0957-0233/15/10/023
    [29]
    JOACHIMOWICZ N, MALLORQUI J J, BOLOMEY J C, et al. Convergence and stability assessment of Newton-Kantorovich reconstruction algorithms for microwave tomography[J]. IEEE Transactions on Medical Imaging, 1998, 17(4): 562-570. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=194dfe3ec4d6d6288a023303927eb2a6
    [30]
    JIANG H, PAULSEN K D, OSTERBERG U L, et al. Optical image reconstruction using frequency-domain data: simulations and experiments[J]. Journal of the Optical Society of America, 1996, 13(2): 253-266. doi: 10.1364/JOSAA.13.000253
    [31]
    CAI W, EWING D J, MA L. Application of simulated annealing for multispectral tomography[J]. Computer Physics Communications, 2008, 179(4): 250-255. doi: 10.1016/j.cpc.2008.02.012
    [32]
    MA L, LI X, SANDERS S T, et al. 50 kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography[J]. Optics Express, 2013, 21(1): 1152-1162. doi: 10.1364/OE.21.001152
    [33]
    MA L, CAI W. Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging[J]. Applied Optics, 2008, 47(21): 3751-3759. doi: 10.1364/AO.47.003751
    [34]
    HSIAO C T, CHAHINE G, GUMEROV N. Application of a hybrid genetic/Powell algorithm and a boundary element method to electrical impedance tomography[J]. Journal of Computational Physics, 2001, 173(2): 433-454. https://www.sciencedirect.com/science/article/pii/S0021999101968664
    [35]
    CORANA A, MARCHESI M, MARTINI C, et al. Minimizing multimodal functions of continuous variables with the "simulated annealing" algorithm Corrigenda for this article is available here[J]. ACM Transactions on Mathematical Soft-ware, 1987, 13(3): 262-280. doi: 10.1145/29380.29864
    [36]
    LEI Q, WU Y, XU W, et al. Development and validation of a reconstruction algorithm for three-dimensional nonlinear tomography problems[J]. Optics Express, 2016, 24(14): 15912-15926. doi: 10.1364/OE.24.015912
    [37]
    YONG Y, TIAN Q, GANG L, et al. Recent advances in flame tomography[J]. Chinese Journal of Chemical Engineering, 2012, 20(2): 389-399. doi: 10.1016/S1004-9541(12)60402-9
    [38]
    WORTH N A, DAWSON J R. Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames[J]. Measurement Science Technology, 2012, 24(2): 024013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eacaab5e4056229f8bbf3aa0987cb3c8
    [39]
    MOECK J P, BOURGOUIN J F, DUROX D, et al. Tomographic reconstruction of heat release rate perturbations induced by helical modes in turbulent swirl flames[J]. Experiments in Fluids, 2013, 54(4): 1498. doi: 10.1007/s00348-013-1498-2
    [40]
    SAMARASINGHE J, PELUSO S J, QUAY B D, et al. The three-dimensional structure of swirl-stabilized flames in a lean premixed multinozzle can combustor[J]. Journal of Engineering for Gas Turbines Power, 2016, 138(3): 031502. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea86d1537856f682100b14d7675bce8f
    [41]
    ISHINO Y, OHIWA N. Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame[J]. JSME International Journal Series B Fluids Thermal Engineering, 2005, 48(1): 34-40. doi: 10.1299/jsmeb.48.34
    [42]
    MOHRI K, GÖRS S, SCHÖLER J, et al. Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence[J]. Applied Optics, 2017, 56(26): 7385-7395. doi: 10.1364/AO.56.007385
    [43]
    KHADIJEH M, SIMON G, JONATHAN S, et al. Instan-taneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence[J]. Applied Optics, 2017, 56(26): 7385-7395. doi: 10.1364/AO.56.007385
    [44]
    WU Y, XU W, LEI Q, et al. Single-shot volumetric laser induced fluorescence (VLIF) measurements in turbulent flows seeded with iodine[J]. Optics Express, 2015, 23(26): 33408-33418. doi: 10.1364/OE.23.033408
    [45]
    RUAN C, YU T, CHEN F, et al. Experimental characteri-zation of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence[J]. Energy, 2019, 170: 744-751. doi: 10.1016/j.energy.2018.12.215
    [46]
    MA L, LEI Q, WU Y, et al. From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz[J]. Combustion and Flame, 2016, 165: 1-10. doi: 10.1016/j.combustflame.2015.08.026
    [47]
    LIU H, SUN B, CAI W. kHz-rate volumetric flame imaging using a single camera[J]. Optics Communications, 2019, 437: 33-43. doi: 10.1016/j.optcom.2018.12.036
    [48]
    CAI W, KAMINSKI C F. Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows[J]. Progress in Energy Combustion Science, 2017, 59: 1-31. doi: 10.1016/j.pecs.2016.11.002
    [49]
    LIU X, WANG G, ZHENG J, et al. Temporally resolved two dimensional temperature field of acoustically excited swirling flames measured by mid-infrared direct absorption spectroscopy[J]. Optics Express, 2018, 26(24): 31983-31994. doi: 10.1364/OE.26.031983
    [50]
    宋俊玲, 洪延姬, 王广宇.燃烧场吸收光谱断层诊断技术[M].北京: 国防工业出版社, 2014.

    SONG J L, HONG Y J, WANG G Y. Combustion field absorption spectrum tomography[M]. Beijing: National Defense Industry Press, 2014.
    [51]
    MA L, WU Y, LEI Q, et al. 3D flame topography and curvature measurements at 5 kHz on a premixed turbulent Bunsen flame[J]. Combustion and Flame, 2016, 166: 66-75. doi: 10.1016/j.combustflame.2015.12.031
    [52]
    UNTERBERGER A, RÖDER M, GIESE A, et al. 3D instantaneous reconstruction of turbulent industrial flames using Computed Tomography of Chemiluminescence (CTC)[J]. Journal of Combustion, 2018, 5373829.
    [53]
    WISEMAN S M, BREAR M J, GORDON R L, et al. Measurements from flame chemiluminescence tomography of forced laminar premixed propane flames[J]. Combustion and Flame, 2017, 183: 1-14. doi: 10.1016/j.combustflame.2017.05.003
    [54]
    SAMARASINGHE J, PELUSO S J, QUAY B D, et al. The three-dimensional structure of swirl-stabilized flames in a lean premixed multinozzle can combustor[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(3): 031502. doi: 10.1115/1.4031439
    [55]
    HUANG Q X, WANG F, LIU D, et al. Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography[J]. Combustion and Flame, 2009, 156(3): 565-573. doi: 10.1016/j.combustflame.2009.01.001
    [56]
    TURNS S R. An introduction to combustion[M]. New York: McGraw-Hill College, 1996.
    [57]
    HOSSAIN M M, LU G, SUN D, et al. Three-dimensional reconstruction of flame temperature and emissivity distribution using optical tomographic and two-colour pyrometric techniques[J]. Measurement Science Technology, 2013, 24(7): 074010. doi: 10.1088/0957-0233/24/7/074010
    [58]
    STASIO S D, MASSOLI P. Influence of the soot property uncertainties in temperature and volume-fraction measurements by two-colour pyrometry[J]. Measurement Science Technology, 1994, 5(12): 1453. doi: 10.1088/0957-0233/5/12/006
    [59]
    HOSSAIN M M, LU G, YAN Y. Soot volume fraction profiling of asymmetric diffusion flames through tomographic imaging[C]//Proceeding of IEEE International Conference on Imaging Systems and Techniques (IST). 2014.
    [60]
    KOHSE-HÖINGHAUS K, JEFFRIES J B. Applied combustion diagnostics[M]. New York: Taylor and Francis, 2002.
    [61]
    刘晶儒, 赵新艳, 叶锡生, 等.激光光谱技术在燃烧流场诊断中的应用[J].光学精密工程, 2011, 19(2): 284-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201102010

    LIU J R, ZHAO X Y, YE X S, et al. Application of laser spectroscopy in combustion flow field diagnosis[J]. Optics and Precision Engineering, 2011, 19(2): 284-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201102010
    [62]
    MILLER J D, PELTIER S J, SLIPCHENKO M N, et al. Investigation of transient ignition processes in a model scramjet pilot cavity using simultaneous 100 kHz formaldehyde planar laser-induced fluorescence and CH* chemiluminescence imaging[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2865-2872. doi: 10.1016/j.proci.2016.07.060
    [63]
    MA L, LEI Q, CAPIL T, et al. Direct comparison of two-dimensional and three-dimensional laser-induced fluorescence measurements on highly turbulent flames[J]. Optics Letters, 2017, 42(2): 267-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ca98f196882ef5eba0edf9835c3e9bb1
    [64]
    HALLS B R, THUL D J, MICHAELIS D, et al. Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet[J]. Optics Express, 2016, 24(9): 10040-10049. doi: 10.1364/OE.24.010040
    [65]
    HALLS B R, HSU P, ROY S, et al. Two-color volumetric laser-induced fluorescence for 3D OH and temperature fields in turbulent reacting flows[J]. Optics Letters, 2018, 43(12): 2961-2964. doi: 10.1364/OL.43.002961
    [66]
    SCHWARZ A. Multi-tomographic flame analysis with a schlieren apparatus[J]. Measurement Science Technology, 1996, 7(3): 406. doi: 10.1088/0957-0233/7/3/023
    [67]
    SETTLES G S, HARGATHER M J. A review of recent developments in schlieren and shadowgraph techniques[J]. Measurement Science Technology, 2017, 28(4): 042001. doi: 10.1088/1361-6501/aa5748
    [68]
    ISHINO Y, HAYASHI N, RAZAK I F B A, et al. 3D-CT (computer tomography) measurement of an instantaneous density distribution of turbulent flames with a multi-directional quantitative schlieren camera (reconstructions of high-speed premixed burner flames with different flow velocities)[J]. Flow, Turbulence Combustion, 2016, 96: 819-835. doi: 10.1007/s10494-015-9658-5
    [69]
    KLINNER J, WILLERT C. Tomographic shadowgraphy for three-dimensional reconstruction of instantaneous spray distributions[J]. Experiments in Fluids, 2012, 53(2): 531-543. doi: 10.1007/s00348-012-1308-2
    [70]
    UPTON T, VERHOEVEN D, HUDGINS D. High-resolution computed tomography of a turbulent reacting flow[J]. Experiments in Fluids, 2011, 50(1): 125-134. doi: 10.1007/s00348-010-0900-6
    [71]
    NICOLAS F, TODOROFF V, PLYER A, et al. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurements[J]. Experiments in Fluids, 2016, 57(1): 13. doi: 10.1007/s00348-015-2100-x
    [72]
    HUANG J Q, LIU H C, CAI W W. Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning[J]. Journal of Fluid Mechanics, 2019, 875, R2. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112019005457
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (215) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return