Volume 34 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
GE Wenxing, GUI Feng, YUAN Huacheng, et al. Aerodynamic design and numerical simulation of combined cycle nozzle with small length to height ratio[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 8-17. doi: 10.11729/syltlx20190142
Citation: GE Wenxing, GUI Feng, YUAN Huacheng, et al. Aerodynamic design and numerical simulation of combined cycle nozzle with small length to height ratio[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 8-17. doi: 10.11729/syltlx20190142

Aerodynamic design and numerical simulation of combined cycle nozzle with small length to height ratio

doi: 10.11729/syltlx20190142
  • Received Date: 2019-11-04
  • Rev Recd Date: 2020-02-17
  • Publish Date: 2020-12-25
  • A preliminary study on the aerodynamic design of the combined cycle nozzle working in the range Ma=0~6.0 with small length to height ratio was carried out under strong geometric restricts. The line of the nozzle was designed by the method of characteristic. The effects of the design Mach number, the three-dimensional lateral expansion angle and the relative position of the two nozzles on the aerodynamic performance were studied. A nozzle aerodynamic design scheme considering both the effective utilization of space and the aerodynamic performance was presented. The numerical simulation results show that reducing the Mach number at the design points can improve the performance of the combined cycle nozzles during the subsonic flight and avoid serious overexpansion of the nozzles. With the increase of the lateral expansion angle, the aerodynamic performance of the nozzle that keeps the exit height unchanged at high Mach number is superior, while the aerodynamic performance of the nozzle at low Mach number decreases seriously. The relative position of the turbine engine and the ramjet nozzle outlet has a great influence on the aerodynamic performance of the transition point, and there is an optimal position layout, which achieves the optimal thrust performance. The thrust coefficient of the combined cycle nozzle is about 0.920 at the designed Mach number. The flow field is smooth transition during the transition mode, when the thrust coefficient is not less than 0.918.
  • loading
  • [1]
    CURRAN E T, MURTHY S N B. Scramjet propulsion[M]. Reston:American Institute of Aeronautics and Astronautics, 2000.
    [2]
    KAZMAR R R. Airbreathing hypersonic propulsion at Pratt & Whitney-overview[R]. AIAA-2005-3256, 2005.
    [3]
    SNYDER L E, ESCHER D W, DeFRANCESCO R L, et al. Turbine Based Combination Cycle (TBCC) propulsion subsystem integration[R]. AIAA 2004-3649, 2004.
    [4]
    KELLY M J, MENICH R P, OLDS J R. What's cheaper to fly: rocket or TBCC? Why?[R]. AIAA 2010-2326, 2010.
    [5]
    BARTOLOTTA P A, McNELIS N B, SHAFER D G. High speed turbines: development of a turbine accelerator (RTA) for space access[R]. AIAA 2003-6943, 2003.
    [6]
    EDWARDS C, SMALL W, WEIDNER J, et al. Studies of scramjet/airframe integration techniques for hypersonic aircraft[C]//Proc of the 13th Aerospace Sciences Meeting. 1975.
    [7]
    LEDERER R, KRUGER W. Nozzle development as a key element for hypersonics[C]//Proc of the 5th International Aerospace Planes and Hypersonics Technologies Conference. 1993.
    [8]
    McDANIEL J C, CHELLIAH H, GOYNE C P, et al. US National Center for hypersonic combined cycle propulsion: An overview[R]. AIAA 2009-7280, 2009.
    [9]
    DUSA D J.Exhaust nozzle system design considerations for turbo-ramjet propulsion systems[R]. ISABE 89-7077, 1989.
    [10]
    GAMBLE E J, HAID D.Hydraulic and kinematic system model for TBCC dynamic Simulation[R]. AIAA 2010-6641, 2010.
    [11]
    朱大明, 陈敏, 唐海龙, 等.高超声速涡轮/冲压组合发动机方案[J].北京航空航天大学学报, 2006, 32(3):263-266. doi: 10.3969/j.issn.1001-5965.2006.03.004

    ZHU D M, CHEN M, TANG H L, et al. "Over-under" concept hypersonic turbo-ramjet combined propulsion system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(3):263-266. doi: 10.3969/j.issn.1001-5965.2006.03.004
    [12]
    张丁午, 王强, 胡海洋.并联式TBCC发动机进排气系统气动特性研究[J].燃气涡轮试验与研究, 2013, 26(6):35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-RQWL201306009.htm

    ZHANG D W, WANG Q, HU H Y. Aerodynamic characte-ristics of the over-under TBCC inlet and exhaust system[J]. Gas Turbine Experiment and Research, 2013, 26(6):35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-RQWL201306009.htm
    [13]
    CHEN M, ZHU Z L, ZHU D M, et al.Analysis tool for Turbine Based Combined Cycle engine concept[J].Journal of Astronautics, 2006, 27(5):854-859. http://www.researchgate.net/publication/293320709_Performance_analysis_tool_for_turbine_based_combined_cycle_engine_concept
    [14]
    李龙. TBCC推进系统总体性能建模与工作特性分析[D].南京: 南京航空航天大学, 2008.

    LI L. Performance mathematic model and operation characteristic analysis for Turbine Based Combined Cycle engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
    [15]
    李超.并联式TBCC排气系统的气动设计、性能研究及初步优化[D].南京: 南京航空航天大学, 2009.

    LI C. Aerodynamic scheme designing, performance analysis and preliminary optimization of over/under TBCC exhaust system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
    [16]
    莫建伟, 徐惊雷, 乔松松.并联式TBCC发动机排气系统性能数值模拟[J].推进技术, 2013, 34(4):463-469. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201304007.htm

    MO J W, XU J L, QIAO S S. Numerical study of the over-under TBCC exhaust system[J]. Journal of Propulsion Technology, 2013, 34(4):463-469. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201304007.htm
    [17]
    王占学, 刘增文, 王鸣, 等.涡轮基组合循环发动机技术发展趋势和应用前景[J].航空发动机, 2013, 39(3):12-17. doi: 10.3969/j.issn.1672-3147.2013.03.003

    WANG Z X, LIU Z W, WANG M, et al. Future development and application prospect of Turbine Based Combined Cycle engine[J]. Aeroengine, 2013, 39(3):12-17. doi: 10.3969/j.issn.1672-3147.2013.03.003
    [18]
    王永胜, 王占学, 刘增文, 等.并联式涡轮冲压组合发动机安装性能数值模拟[J].推进技术, 2011, 32(3):312-317, 322. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201103005.htm

    WANG Y S, WANG Z X, LIU Z W, et al. Numerical simulation of installed performance for parallel turbo-ramjet combined cycle engine[J]. Journal of Propulsion Technology, 2011, 32(3):312-317, 322. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201103005.htm
    [19]
    刘增文.涡轮冲压组合发动机一体化数值模拟[D].西安: 西北工业大学, 2007.

    LIU Z W. Integrated performance numerical simulation of turbo-ramjet[D]. Xi'an: Northwestern Polytechnical University, 2007.
    [20]
    张连河, 范洁川.三元收缩段优化设计研究[J].空气动力学学报, 2003, 21(4):417-423. doi: 10.3969/j.issn.0258-1825.2003.04.005

    ZHANG L H, FAN J C. Research of optimized design of three-dimensional contraction[J]. ActaAerodynamica Sinica, 2003, 21(4):417-423. doi: 10.3969/j.issn.0258-1825.2003.04.005
    [21]
    李念, 张堃元, 徐惊雷.二维非对称喷管数值模拟与验证[J].航空动力学报, 2004, 19(6):802-805. doi: 10.3969/j.issn.1000-8055.2004.06.012

    LI N, ZHANG K Y, XU J L. Simulation and experiment validation of a two dimensional asymmetric ramp nozzle[J]. Journal of Aerospace Power, 2004, 19(6):802-805. doi: 10.3969/j.issn.1000-8055.2004.06.012
    [22]
    SPAID F W, KEENER E R. Hypersonic nozzle/afterbody CFD code validation. Ⅰ-experimental measurements[C]//Proc of the 31st Aerospace Sciences Meeting. 1993.
    [23]
    朱克罗, 霍夫曼.气体动力学[M].王汝涌, 吴宗真, 吴宗善, 译.北京: 国防工业出版社, 1984.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(5)

    Article Metrics

    Article views (255) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return