Volume 34 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
YANG Kai, ZHU Tao, WANG Xiong, et al. Self-innovated ALTP heat-flux sensor and its performance tests[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 86-91. doi: 10.11729/syltlx20190148
Citation: YANG Kai, ZHU Tao, WANG Xiong, et al. Self-innovated ALTP heat-flux sensor and its performance tests[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 86-91. doi: 10.11729/syltlx20190148

Self-innovated ALTP heat-flux sensor and its performance tests

doi: 10.11729/syltlx20190148
  • Received Date: 2019-10-07
  • Rev Recd Date: 2019-12-16
  • Publish Date: 2020-12-25
  • The transverse Seebeck effect is used to develop the ALTP heat-flux sensor for the high-frequency-pulse heat flux density measurement in hypervelocity wind tunnel tests. The self-innovated ALTP heat-flux sensor is statically calibrated with the xeon short arc lamp calibration system. And the sensitive coefficient is about 8.24 μV/(kW·m-2), which is larger than the sensitive coefficient 6.90 μV/(kW·m-2) of the ALTP heat-flux sensor developed abroad. Then an experiment was conducted in a shock wind tunnel to get the sensor's response time in comparison with thin-film-resistance heat-flux sensors, and the response time of the ALTP heat-flux sensor is less than 0.20 μs.
  • loading
  • [1]
    陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030

    CHEN J Q, TU G H, ZHANG Y F, et al. Hypersonic boundary layer transition:what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030
    [2]
    刘向宏, 赖光伟, 吴杰.高超声速边界层转捩实验综述[J].空气动力学学报, 2018, 36(2):196-212. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802005.htm

    LIU X H, LAI G W, WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2):196-212. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802005.htm
    [3]
    SCHNEIDER S P. Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight:the role of quiet tunnels[J]. Progress in Aerospace Sciences, 2015, 72:17-29 doi: 10.1016/j.paerosci.2014.09.008
    [4]
    FUJII K. Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2006, 43(4):731-738. doi: 10.2514/1.17860
    [5]
    姜楠, 李悦雷.圆柱绕流尾迹对壁湍流相干结构影响的实验研究[J].实验流体力学, 2007, 21(3):8-13. http://www.syltlx.com/CN/abstract/abstract9560.shtml

    JIANG N, LI Y L. Experimental study on coherent structures in wall turbulence interacting with a circular cylinder wake[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3):8-13. http://www.syltlx.com/CN/abstract/abstract9560.shtml
    [6]
    BERRIDGE D C, CASPER K M, RUFER S J, et al. Measure-ments and computations of second-mode instability waves in three hypersonic wind tunnels[R]. AIAA 2010-5002, 2010.
    [7]
    ALBA C R, CASPER K M, BERESH S J, et al. Comparison of experimentally measured and computed second-mode distur-bances in hypersonic boundary-layers[R]. AIAA 2010-897, 2010.
    [8]
    MUNOZ F, HEITMANN D, RADESPIEL R. Instability modes in boundary layers of an inclined cone at Mach 6[J]. Journal of Spacecraft and Rockets, 2014, 51(2):442-454. doi: 10.2514/1.A32564
    [9]
    纪锋, 解少飞, 沈清.高超声速1 MHz高频脉动压力测试技术及其应用[J].空气动力学学报, 2016, 34(5):587-591. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201605007.htm

    JI F, XIE S F, SHEN Q. Hypersonic high frequency (1MHz) fluctuation pressure testing technology and application[J]. Acta Aerodynamica Sinica, 2016, 34(5):587-591. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201605007.htm
    [10]
    HOFFERTH J, SARIC W, KUEHL J, et al. Boundary-layer instability and transition on a flared cone in a Mach 6 quiet wind tunnel[J]. International Journal of Engineering Systems Modelling and Simulation, 2013, 5(1):109-124. http://meetings.aps.org/link/BAPS.2010.DFD.CE.4
    [11]
    LACHOWICZ J T, CHOKANI N, WILKINSON S P. Boundary-layer stability measurements in a hypersonic quiet tunnel[J]. AIAA Journal, 1996, 34(12):2496-2500. doi: 10.2514/3.13430
    [12]
    PARZIALE N J, SHEPHERD J E, HORNUNG H G. Diffe-rential interferometric measurement of instability in a hypervelocity boundary layer[J]. AIAA Journal, 2013, 51(3):750-754.
    [13]
    PARZIALE N J, SHEPHERD J E, HORNUNG H G. Observations of hypervelocity boundary-layer instability[J]. Journal of Fluid Mechanics, 2015, 781:87-112. doi: 10.1017/jfm.2015.489
    [14]
    WU J, RADESPIEL R. Investigation of instability waves in a Mach 3 laminar boundary layer[J]. AIAA Journal, 2015, 53(12):3712-3725. doi: 10.2514/1.J054040
    [15]
    余涛, 张威, 张毅锋, 等.一种非介入式高超声速边界层不稳定波的测量方法[J].实验流体力学, 2019, 33(5):70-75. YU T, http://www.syltlx.com/CN/abstract/abstract11212.shtml

    ZHANG W, ZHANG Y F, et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5):70-75. http://www.syltlx.com/CN/abstract/abstract11212.shtml
    [16]
    李悦雷.基于小波分析方法的高超音速尖锥边界层转捩的实验研究[D].天津: 天津大学, 2007.

    LI Y L. Experimental investigations of hypersonic boundary layer transition on a sharp cone based on the method of wavelet analysis[D]. Tianjin: Tianjin University, 2007.
    [17]
    ROEDIGER T, KNAUSS H, ESTORF M, et al. Hypersonic instability waves measured using fast-response heat-flux gauges[J]. Journal of Spacecraft and Rockets, 2009, 46(2):266-273. doi: 10.2514/1.37026
    [18]
    杨庆涛, 曾慧, 王辉, 等.原子层热电堆热流传感器及在气动试验中的应用[J].战术导弹技术, 2015(6):37-41, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201506007.htm

    YANG Q T, ZENG H, WANG H, et al. Atomic layer thermopile heat flux sensor and its application in aerodynamics tests[J]. Tactical Missile Technology, 2015(6):37-41, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201506007.htm
    [19]
    KEGERISE M A, RUFER S J. Unsteady heat-flux measure-ments of second-mode instability waves in a hypersonic flat-plate boundary layer[J]. Experiments in Fluids, 2016, 57(8):130. doi: 10.1007/s00348-016-2214-9
    [20]
    韩健.高超声速尖锥边界层流动稳定性的子波分析与互双谱分析[D].天津: 天津大学, 2010.

    HAN J. Wavelet analysis and crossbispectrum analysis of flow instability for hypersonic sharp cone boundary layer[D]. Tianjing: Tianjing University, 2010.
    [21]
    刘初平.气动热与热防护试验热流测量[M].北京:国防工业出版社, 2013.

    LIU C P. Heat flux measurement inaerothermodynamic test[M]. Beijing:National Defense Industry Press, 2013.
    [22]
    ZHANG P X, HABERMEIER H U. Atomic layer thermopile materials:physics and application[J]. Journal of Nanomaterials, 2008, 2008(S1):329601. doi: 10.1155/2008/329601
    [23]
    王勇, 虞澜, 陈思功, 等.原子层热电堆热(光)电探测器的原理及研究现状[J].材料导报, 2011, 25(7):33-37, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201107010.htm

    WANG Y, YU L, CHEN S G, et al. Principle and research statue of atomic layer thermopile thermoelectric or photoelectric detectors[J]. Materials Review, 2011, 25(7):33-37, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201107010.htm
    [24]
    ROEDIGER T, KNAUSS H, GAISBAIER U, et al. Time-resolved heat transfer measurements on the tip wall of a ribbed channel using a novel heat flux sensor——Part Ⅰ:sensor and benchmarks[J]. Journal of Turbomachinery, 2008, 130(1):011018. http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220081100784106
    [25]
    KNAUSS H, ROEDIGER T, BOUNTIN D A, et al. Novel sensor for fast heat flux measurements[J]. Journal of Spacecraft and Rockets, 2009, 46(2):255-265. doi: 10.2514/1.32011?mi=8f0xx2&af=R&contents=articlesChapters&countTerms=true&field1=Contrib&target=default&text1=Boris%2C+S
    [26]
    杨凯, 杨庆涛, 朱新新, 等.一种薄膜热电堆热流传感器灵敏度系数的实验研究[J].宇航计测技术, 2018, 38(3):67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-YHJJ201803011.htm

    YANG K, YANG Q T, ZHU X X, et al. Calibration tests on a new thin-film thermopile heat-flux sensor[J]. Journal of Astronautic Metrology and Measurement, 2018, 38(3):67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-YHJJ201803011.htm
    [27]
    YANG K, YANG Q T, ZHU X X, et al. A molecular dynamics simulation on the static calibration test of a revised thin-film thermopile heat-flux sensor[J]. Measurement, 2020, 150(1):107039. http://www.sciencedirect.com/science/article/pii/S0263224119309054
    [28]
    杨凯, 朱涛, 王雄, 等.一种原子层热电堆热流传感器的封装结构: 中国, ZL20192 2230062.2[P]. 2020-05-26.

    YANG K, ZHU T, WANG X, et al. The packed structure for Atomic Layer Thermopile heat-flux sensor: China, ZL20192 2230062.2[P]. 2020-05-26.
    [29]
    WANG H, YANG Q T, ZHU X X, et al. Inverse estimation of heat flux using linear artificial neural networks[J]. International Journal of Thermal Sciences, 2018, 132:478-485. http://www.sciencedirect.com/science/article/pii/S1290072917317763
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (610) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return