Volume 34 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
LUO Changtong, HU Zongmin, LIU Yunfeng, et al. Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 78-89. doi: 10.11729/syltlx20200006
Citation: LUO Changtong, HU Zongmin, LIU Yunfeng, et al. Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 78-89. doi: 10.11729/syltlx20200006

Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels

doi: 10.11729/syltlx20200006
  • Received Date: 2019-12-17
  • Rev Recd Date: 2020-02-20
  • Publish Date: 2020-06-25
  • Hypersonic flow characteristics such as high temperature real gas effect, viscous interference effect, Mach number effect and scale effect, do not follow the similarity simulation criterion of experimental gas dynamics, which makes the hypersonic flow phenomenon beyond the range that can be accurately predicted by the classical gas dynamics theory. How to use the ground experimental data to predict the flight state, that is, the problem of ground-to-flight (G2F) correlation, is the key scientific problem that restricts the development of new aerospace vehicles. This paper summarizes the latest research progress of G2F correlation, and focuses on the multi-space correlation theory and correlation method of intelligent functional optimization. According to the theory, from a high-dimensional point of view, the experimental results of different wind tunnels are intrinsically related, and the flight test can be regarded as an ideal wind tunnel experiment. Based on the experimental data of wind tunnel groups (different types of wind tunnels which can simulate different parameter sections), using a specialized intelligent learning algorithm in functional space, the correlation method is performed by starting from the high-dimensional full parameter space. And then by carrying out a series of dimension reduction and adaptive space transformation, the invariant law is automatically deduced that different wind tunnels abide by together, so as to get a formula for G2F correlation. The results of verification examples and preliminary applications show that the multi-space correlation theory and functional intelligent optimization correlation method are effective, which would be a new trend in the research of G2F correlation for hypersonic aerodynamic force and heating.
  • loading
  • [1]
    ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston, VA:AIAA, 2006.
    [2]
    陈坚强, 张益荣, 张毅锋, 等.高超声速气动力数据天地相关性研究综述[J].空气动力学学报, 2014, 32(5):587-599. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201405005

    CHEN J Q, ZHANG Y R, ZHANG Y F, et al. Review of correlation analysis of aerodynamic data between flight and ground prediction for hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2014, 32(5):587-599. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201405005
    [3]
    BERTIN J J, CUMMINGS R M. Critical hypersonic aerother-modynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38(1):129-157. doi: 10.1146/annurev.fluid.38.050304.092041
    [4]
    SALTZMAN E J, GARRIGER D E. Summary of full-scale lift and drag characteristics of the X-15 airplane[R]. NASA TN D-3343, 1966.
    [5]
    VLASOV V I, GORSHKOV A B, KOVALEV R V, et al. Thin triangular blunt-nosed plate in a viscous hypersonic flow[J]. Fluid Dynamics, 2009, 44(4):596-605. doi: 10.1134/S0015462809040139
    [6]
    ELSENAAR A. On Reynolds number effects and simulation[R]. AGARD CP-429, 1988.
    [7]
    HAINES A B. Prediction of scale effects at transonic speeds:current practice and a gaze into the future[J]. Aeronautical Journal, 2000, 104(1039), 421-431.
    [8]
    HOWE J T. Hypervelocity atmospheric flight: real gas flow fields[R]. NASA RP-1249, 1989.
    [9]
    龚安龙, 解静, 刘晓文, 等.近空间高超声速气动力数据天地换算研究[J].工程力学, 2017, 34(10):229-238. doi: 10.6052/j.issn.1000-4750.2016.05.0404

    GONG A L, XIE J, LIU X W, et al. Study on ground-to-flight extrapolation of near space hypersonic aerodynamic data[J]. Engineering Mechanics, 2017, 34(10):229-238. doi: 10.6052/j.issn.1000-4750.2016.05.0404
    [10]
    NICOLÌ A, IMPERATORE B, MARINI M, et al. Ground-to-flight extrapolation of the aerodynamic coefficients of the VEGA launcher[R]. AIAA-2006-3829, 2006.
    [11]
    PETERSON J B, MANN M J, SORRELLS R B, et al. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-701). II: Extrapolation of wind-tunnel data to full-scale conditions[R]. NASA TP-1515, 1980.
    [12]
    RUFOLO G, RONCIONI P, MARINI M, et al. Post flight aerodynamic analysis of the experimental vehicle PRORA USV 1[R]. AIAA-2008-2661, 2008.
    [13]
    MORELLI E A, DELOACH R. Wind tunnel database development using modern experiment design and multivariate orthogonal functions[R]. AIAA-2003-0653, 2003.
    [14]
    DOUGLAS D P, CAROLYN M. Statistical methods for rapid aerothermal analysis and design technology: Validation[R]. NASA NAG1-02030, 2003.
    [15]
    汪清, 钱炜祺, 何开锋.导弹气动参数辨识与优化输入设计[J].宇航学报, 2008, 29(3):789-793. doi: 10.3873/j.issn.1000-1328.2008.03.010

    WANG Q, QIAN W Q, HE K F. Aerodynamic parameter identification and optimal input design for missile[J]. Journal of Astronautics, 2008, 29(3):789-793. doi: 10.3873/j.issn.1000-1328.2008.03.010
    [16]
    LEE J H, KIM E T, CHANG B H, et al. The accuracy of the flight derivative estimates derived from flight data[J]. International Journal of Aerospace and Mechanical Engineering, 2009, 3(10):1317-1323. https://www.researchgate.net/publication/289654115_The_accuracy_of_the_flight_derivative_estimates_derived_from_flight_data
    [17]
    NORGAARD M, JORGENSEN C, ROSS J. Neural network prediction of new aircraft design coefficients[R]. NASA Technical Memorandum 112197, 1997.
    [18]
    RAJKUMAR T, BARDINA J. Prediction of aerodynamic coefficients using neural networks for sparse data[C]//Proceedings of the 15th International Florida Artificial Intelligence Research Society Conference.2002.
    [19]
    MALMATHANRAJ R, TYSON T F. Characteristic prediction of wind tunnel tests using learning from examples[J]. International Journal of Computer Applications, 2011, 35(6):5-14. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_ea70ceb140c7edde7473ed13527228ad
    [20]
    RAVIKIRAN N, UBAIDULLA P. Support vector machine approach to drag coefficient estimation[C]//Proc of the 7th International Conference on Signal Processing. 2004.
    [21]
    姜宗林, 罗长童, 刘云峰, 高超声速风洞试验数据多空间相关理论与关联方法研究[C]//第四届高超声速科技学术会议论文集, 2011.

    JIANG Z L, LUO C T, LIU Y F. Research on multi-space correlation theory and correlation method of hypersonic wind tunnel experimental data[C]//Proc of the 4th National Conference on Hypersonic Science and Technology. 2011.
    [22]
    姜宗林, 罗长童, 胡宗民, 等.高超声速风洞试验数据的多维空间相关理论与关联方法[J].中国科学(物理学力学天文学), 2015, 45(12):40-51. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201512006.htm

    JIANG Z L, LUO C T, HU Z M, et al. Multi-dimensional interrelation theory for hypersonic wind-tunnel experimental data and its correlation algorithm[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(12):124705. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201512006.htm
    [23]
    BRUNTON S L, PROCTOR J L, KUTZ J N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems[J]. PNAS, 2016, 113(15):3932-3937. doi: 10.1073/pnas.1517384113
    [24]
    GAMAHARA M, HATTORI Y. Searching for turbulence models by artificial neural network[J]. Physical Review Fluids, 2017, 2(5):054604. doi: 10.1103/PhysRevFluids.2.054604
    [25]
    MALIK K, ZBIKOWSKI M, TEODORCZYK A. Detonation cell size model based on deep neural network for hydrogen, methane and propane mixtures with air and oxygen[J]. Nuclear Engineering and Technology, 2019, 51(2):424-431. doi: 10.1016/j.net.2018.11.004
    [26]
    CHANDRASEKARAN N, OOMMEN C, KUMAR V R S, et al. Prediction of detonation velocity and N-O composition of high energy C-H-N-O explosives by means of artificial neural networks[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(5):579-587. doi: 10.1002/prep.201800325
    [27]
    FRANKE L L C, CHATZOPOULOS A K, RIGOPOULOS S. Tabulation of combustion chemistry via Artificial Neural Networks (ANNs):Methodology and application to LES-PDF simulation of Sydney flame L[J]. Combustion and Flame, 2017, 185:245-260. doi: 10.1016/j.combustflame.2017.07.014
    [28]
    ZHU L Y, ZHANG W W, KOU J Q, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fluids, 2019, 31:015105. doi: 10.1063/1.5061693
    [29]
    XIE C Y, WANG J C, LI H, et al. Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence[J]. Physics of Fluids, 2019, 31:085112. doi: 10.1063/1.5110788
    [30]
    LUO C T, ZHANG S L. Parse-matrix evolution for symbolic regression[J]. Engineering Applications of Artificial Intelligence, 2012, 25(6):1182-1193. doi: 10.1016/j.engappai.2012.05.015
    [31]
    KOZA J R. Genetic programming:On the programming of computers by means of natural selection[M]. 5th ed. Cambridge, MA:MIT Press, 1992.
    [32]
    O'NEILL M, RYAN C. Grammatical evolution[J]. IEEE Transactions on Evolutionary Computation, 2001, 5(4):349-358. http://d.old.wanfangdata.com.cn/Periodical/ywxk200705038
    [33]
    LUO C T, YU B. Low dimensional simplex evolution:a new heuristic for global optimization[J]. Journal of Global Optimization, 2012, 52(1):45-55. doi: 10.1007/s10898-011-9678-1
    [34]
    CHEN C, LUO C T, JIANG Z L. Block building programming for symbolic regression[J]. Neurocomputing, 2018, 275:1973-1980. doi: 10.1016/j.neucom.2017.10.047
    [35]
    CHEN C, LUO C T, JIANG Z L. A multilevel block building algorithm for fast modeling generalized separable systems[J]. Expert Systems with Applications, 2018, 109:25-34. doi: 10.1016/j.eswa.2018.05.021
    [36]
    TSIEN H S. Superaerodynamics, mechanics of rarefied gases[J]. Journal of the Aeronautical Sciences, 1946, 13(12):653-664. doi: 10.2514/8.11476
    [37]
    CHENG H K. Hypersonic shock-layer theory of the stagnation region at low Reynolds number[C]//Proceedings of the 1961 Heat Transfer and Fluid Mechanics Institute. 1961.
    [38]
    MACROSSAN M N. Scaling parameters for hypersonic flow: correlation of sphere drag data[C]//Proc of the 25th International Symposium on Rarefied Gas Dynamics. 2006.
    [39]
    LUO C T, HU Z M, ZHANG S L, et al. Adaptive space transformation:an invariant based method for predicting aerodynamic coefficients of hypersonic vehicles[J]. Engineering Applications of Artificial Intelligence, 2015, 46:93-103. doi: 10.1016/j.engappai.2015.09.001
    [40]
    FIELD J V. Kepler's cosmological theories-their agreement with observation[J]. Quarterly Journal of the Royal Astronomical Society, 1982, (23):556-568. https://ui.adsabs.harvard.edu/abs/1982QJRAS..23..556F/abstract
    [41]
    [42]
    李素循.典型外形高超声速流动特性[M].北京:国防工业出版社, 2008.

    LI S X. Hypersonic flow characteristics around typical configuration[M]. Beijing:National Defense Industry Press, 2008.
    [43]
    WANG Q, LI J P, ZHAO W, et al. Comparative study on aerodynamic heating under perfect and nonequilibrium hypersonic flows[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(2):624701. http://d.old.wanfangdata.com.cn/Conference/9438991
    [44]
    OERTEL H. Prandtl-essentials of fluid mechanics[M]. New York:Springer New York, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (411) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return