Volume 34 Issue 5
Oct.  2020
Turn off MathJax
Article Contents
QUAN Tong, LIAO Shenfei, ZOU Liyong, et al. Instability of an interface subjected to a perturbed shock: reflected shock effects[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 12-19. doi: 10.11729/syltlx20200019
Citation: QUAN Tong, LIAO Shenfei, ZOU Liyong, et al. Instability of an interface subjected to a perturbed shock: reflected shock effects[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 12-19. doi: 10.11729/syltlx20200019

Instability of an interface subjected to a perturbed shock: reflected shock effects

doi: 10.11729/syltlx20200019
  • Received Date: 2020-02-13
  • Rev Recd Date: 2020-03-17
  • Publish Date: 2020-10-25
  • The Richtmyer-Meshkov(RM) instability of a N2/SF6 interface subjected to a perturbed shock is investigated experimentally in a vertical shock tube. The perturbed shock is generated by a planar shock diffracting around a rigid cylinder and the initial uniform interface is formed by a membraneless method. Three different dimensionless distances η (the ratio of spacing from the cylinder to the interface over the cylinder diameter) are considered. Dynamic images of the interface evolution after the impact of the reflected shock are obtained using both schlieren and planar Mie scattering techniques. Our previous study (Zou, et al., 2017) indicated that, after the impingement of the incident shock, the interface evolves into a "Λ" shape structure with two interface steps at both sides and a cavity at the center. The results in present paper show that, due to the impingement of the reflected shock, the "Λ" shape structure interface first experiences a fast phase reversal and then the perturbation increases gradually. For η=2.0 case, the interface evolves into an overall bubble structure, while for η=3.3 and η=4.0 cases, a spike appears in the center of the interface besides the overall bubble. The mixing width is further measured from Mie scattering images and compared with the theoretical values. It is found that at the linear stage, the interface width can be predicted well by the linear model proposed by Meyer and Blewett, and at the nonlinear stage, the width can be reasonably estimated by the model proposed by Dimonte and Ramaprabhu. In particular, the distinction between the theoretical prediction and the experimental result is the lowest for the case of η=4.0.
  • loading
  • [1]
    RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13(2):297-319. doi: 10.1002/cpa.3160130207
    [2]
    MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4(5):101-104. doi: 10.1007/BF01015969
    [3]
    ARNETT D. The role of mixing in astrophysics[J]. The Astrophysical Journal Letters Supplement Series, 2000, 127(2):213-217. doi: 10.1086/313364
    [4]
    AMENDT P, COLVIN J D, TIPTON R E, et al. Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility:design and analysis[J]. Physics of Plasmas, 2002, 9(5):2221-2233. doi: 10.1063/1.1459451
    [5]
    LINDL J, LANDEN O, EDWARDS J, et al. Review of the national ignition campaign 2009-2012[J]. Physics of Plasmas, 2014, 21(2):020501. doi: 10.1063/1.4865400
    [6]
    古滨, 李炳南, 姚熊亮, 等.水下冲击波作用下双层壳结构响应特征研究[J].兵器装备工程学报, 2019, 40(11):11-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scbgxb201911003

    GU B, LI B N, YAO X L, et al. Research of impact response of double-shell based on underwater explosion shock wave[J]. Journal of Sichuan Ordnance, 2019, 40(11):11-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scbgxb201911003
    [7]
    姬建荣, 苏健军, 陈君, 等.动爆冲击波传播特性实验研究[J].兵器装备工程学报, 2019, 40(12):20-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scbgxb201912005

    JI J R, SU J J, CHEN J, et al. Experimental study on propagation characteristics of dynamic blast wave[J]. Journal of Sichuan Ordnance, 2019, 40(12):20-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scbgxb201912005
    [8]
    BROUILLETTE M. The Richtmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2002, 34(1):445-468. doi: 10.1146/annurev.fluid.34.090101.162238
    [9]
    DIMOTAKIS P E. Turbulent mixing[J]. Annual Review of Fluid Mechanics, 2005, 37(1):329-356. http://www.ams.org/mathscinet-getitem?mr=2115346
    [10]
    RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interactions[J]. Annual Review of Fluid Mechanics, 2011, 43(43):117-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3ca52260f085621b571fe8f4c47e6278
    [11]
    ZHAI Z G, ZOU L Y, WU Q, et al. Review of experimental Richtmyer-Meshkov instability in shock tube:from simple to complex[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2018, 232(16):2830-2849. doi: 10.1177/0954406217727305
    [12]
    ANDRONOV V, BAKHRAKH S, MESHKOV E, et al. Tur-bulent mixing at contact surface accelerated by shock waves[J]. Soviet Journal of Experimental and Theoretical Physics, 1976, 44(2):424-427. http://adsabs.harvard.edu/abs/1976JETP...44..424A
    [13]
    LATINI M, SCHILLING O, DON W S. High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability:comparison to experimental data and to amplitude growth model predictions[J]. Physics of Fluids, 2007, 19(2):024104. doi: 10.1063/1.2472508
    [14]
    HILL D J, PANTANO C, PULLIN D. Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock[J]. Journal of Fluid Mechanics, 2006, 557:29-61. doi: 10.1017/S0022112006009475
    [15]
    SI T, ZHAI Z G, YANG J M, et al. Experimental investi-gation of reshocked spherical gas interfaces[J]. Physics of Fluids, 2012, 24(5):054101. doi: 10.1063/1.4711866
    [16]
    BALAKUMAR B J, ORLICZ G C, RISTORCELLI J R, et al. Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock:velocity and density statistics[J]. Journal of Fluid Mechanics, 2012, 696:67-93. doi: 10.1017/jfm.2012.8
    [17]
    张赋, 翟志刚, 司廷, 等.反射激波作用下重气柱界面演化的PIV研究[J].实验流体力学, 2014, 28(5):13-17. http://www.syltlx.com/CN/abstract/abstract10767.shtml

    ZHANG F, ZHAI Z G, SI T, et al. Experimental study on the evolution of heavy gas cylinder under reshock condition by PIV method[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5):13-17. http://www.syltlx.com/CN/abstract/abstract10767.shtml
    [18]
    何惠琴, 翟志刚, 司廷, 等.反射激波作用下两种重气柱界面不稳定性实验研究[J].实验流体力学, 2014, 28(6):56-60. http://www.syltlx.com/CN/abstract/abstract10790.shtml

    HE H Q, ZHAI Z G, SI T, et al. Experimental study on thereshocked RM instability of two kinds of heavy gas cylinder[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):56-60. http://www.syltlx.com/CN/abstract/abstract10790.shtml
    [19]
    ZOU L Y, LIAO S F, LIU C L, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders[J]. Physics of Fluids, 2016, 28(3):036101. doi: 10.1063/1.4943127
    [20]
    ISHIZAKI R, NISHIHARA K, SAKAGAMI H, et al. Instability of a contact surface driven by a nonuniform shock wave[J]. Physical Review E, 1996, 53(6):r5592. doi: 10.1103/PhysRevE.53.R5592
    [21]
    刘金宏, 邹立勇, 曹仁义, 等.绕射激波和反射激波作用下N2/SF6界面R-M不稳定性实验研究[J].力学学报, 2014, 46(3):475-479. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201403016

    LIU J H, ZOU L Y, CAO R Y, et al. Experimentally study of the Richtmyer-Meshkov instability at N2/SF6 flat interfaces by diffracted incident shock waves and reshock[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3):475-479. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201403016
    [22]
    ZOU L Y, LIU J H, LIAO S F, et al. Richtmyer-Meshkov instability of a flat interface subjected to a rippled shock wave[J]. Physical Review E, 2017, 95(1):013107. doi: 10.1103/PhysRevE.95.013107
    [23]
    LIAO S F, ZHANG W B, CHEN H, et al. Atwood number effects on the instability of a uniform interface driven by a perturbed shock wave[J]. Physical Review E, 2019, 99(1):013103. http://www.researchgate.net/publication/330229413_Atwood_number_effects_on_the_instability_of_a_uniform_interface_driven_by_a_perturbed_shock_wave
    [24]
    ZHAI Z G, LIANG Y, LIU L L, et al. Interaction of rippled shock wave with flat fast-slow interface[J]. Physics of Fluids, 2018, 30(4):046104. doi: 10.1063/1.5024774
    [25]
    ZOU L Y, ALMAROUF M, CHENG W, et al. Richtmyer-Meshkov instability of an unperturbed interface subjected to a diffracted convergent shock[J]. Journal of Fluid Mechanics, 2019, 879:448-467. doi: 10.1017/jfm.2019.694
    [26]
    COLLINS B D, JACOBS J W. PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface[J]. Journal of Fluid Mechanics, 2002, 464:113-136. doi: 10.1017/S0022112002008844
    [27]
    ZOU L Y, LIU C L, TAN D W, et al. On interaction of shock wave with elliptic gas cylinder[J]. Journal of Visualization, 2010, 13(4):347-353. doi: 10.1007/s12650-010-0053-y
    [28]
    RIGHTLEY P M, VOROBIEFF P, BENJAMIN R F. Evolution of a shock-accelerated thin fluid layer[J]. Physics of Fluids, 1997, 9(6):1770-1782. doi: 10.1063/1.869299
    [29]
    MIKAELIAN K O. Functions sinKx and cosKx[J]. Journal of Physics A:Mathematical and General, 1993, 26(7):1673-1689. doi: 10.1088/0305-4470/26/7/023
    [30]
    MEYER K, BLEWETT P J. Numerical investigation of the stability of a shock-accelerated interface between two fluids[J]. Physics of Fluids, 1972, 15(5):753-759. doi: 10.1063/1.1693980
    [31]
    DIMONTE G, RAMAPRABHU P. Simulations and model of the nonlinear Richtmyer-Meshkov instability[J]. Physics of Fluids, 2010, 22(1):014104. doi: 10.1063/1.3276269
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (299) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return