Volume 34 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
LI Nana, ZHENG Xu, Zhanhua SILBER-LI. Experimental study on the self-diffusiophoresis of the Janus micromotor in complex fluids[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 99-106. doi: 10.11729/syltlx20200023
Citation: LI Nana, ZHENG Xu, Zhanhua SILBER-LI. Experimental study on the self-diffusiophoresis of the Janus micromotor in complex fluids[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 99-106. doi: 10.11729/syltlx20200023

Experimental study on the self-diffusiophoresis of the Janus micromotor in complex fluids

doi: 10.11729/syltlx20200023
  • Received Date: 2020-03-01
  • Rev Recd Date: 2020-04-08
  • Publish Date: 2020-04-25
  • Janus micro/nanomotors have shown broad application prospects as drug delivery tools in biomedicine or energy generators for micro/nano-robots working under complex conditions. Existing studies have focused on the self-diffusiophoresis of Janus micro/nanomotors in simple liquids such as water, however, the research on the mechanism and characteristics of the self-diffusiophoresis in complex fluids is still lacking. This work experimentally investigates the self-diffusiophoresis of 2.06 μm Janus micromotors in polymer PEO solutions. The results systematically describe the influence of the PEO concentration on the propulsion speed of the Janus micromotor, the mean square displacements of the motion, and the rotation feature. Our findings show that the PEO polymers not only influence the viscosity of the solution, but also cause sub-diffusive and super-diffusive behaviors in the short-time and intermediate-time propulsion regime respectively, and result in an anomalous enhancement of the rotation of the Janus micromotors.
  • loading
  • [1]
    ISMAGILOV R F, SCHWARTZ A, BOWDEN N, et al. Autonomous movement and self-assembly[J]. Angewandte Chemie-International Edition, 2002, 41(4):652-654. doi: 10.1002/1521-3773(20020215)41:4<652::AID-ANIE652>3.0.CO;2-U
    [2]
    PAXTON W F, KISTLER K C, OLMEDA C C, et al. Catalytic nanomotors:Autonomous movement of striped nanorods[J]. Journal of the American Chemical Society, 2004, 126:13424-13431. doi: 10.1021/ja047697z
    [3]
    DUAN W T, WANG W, DAS S, et al. Synthetic nano-and micromachines in analytical chemistry:Sensing, migration, capture, delivery and separation[J]. Annual Review of Analytical Chemistry, 2015, 8:311-333. doi: 10.1146/annurev-anchem-071114-040125
    [4]
    WANG W, DUAN W T, AHMED S, et al. Small power:Autonomous nano-and micromotors propelled by self-generated gradients[J]. Nano Today, 2013, 8(5):531-554. doi: 10.1016/j.nantod.2013.08.009
    [5]
    SINGH V V, SOTO F, KAUFMANN K, et al. Micromotor-based energy generation[J]. Angewandte Chemie-International Edition, 2015, 54(23):6896-6899. doi: 10.1002/anie.201501971
    [6]
    BECHINGER C, DI LEONARDO R, LÖWEN H, et al. Active particles in complex and crowded environments[J]. Review of Modern Physics, 2016, 88(4):045006. doi: 10.1103/RevModPhys.88.045006
    [7]
    MORAN J L, POSNER J D. Phoretic self-propulsion[J]. Annual Review of Fluid Mechanics, 2017, 49(1):511-540. doi: 10.1146/annurev-fluid-122414-034456
    [8]
    DE GENNES P G. Soft matter (Nobel lecture)[J]. Angewandte Chemie-International Edition, 1992, 31(7):842-845. doi: 10.1002/anie.199208421
    [9]
    MICHELIN S, LAUGA E. Phoretic self-propulsion at finite Péclet numbers[J]. Journal of Fluid Mechanics, 2014, 747:572-604. doi: 10.1017/jfm.2014.158
    [10]
    DE BUYL P, KAPRAL R. Phoretic self-propulsion:a mesoscopic description of reaction dynamics that powers motion[J]. Nanoscale, 2013, 5:1337-1344. doi: 10.1039/c2nr33711h
    [11]
    Golestanian R, Liverpool T B, Ajdari A. Designing phoretic micro-and nano-swimmers[J]. New J Phys, 2007, 9:126. doi: 10.1088/1367-2630/9/5/126
    [12]
    ANDERSON J L. Colloid transport by interfacial forces[J]. Annual Review of Fluid Mechanics, 1989, 21(1):61-99. doi: 10.1146/annurev.fl.21.010189.000425
    [13]
    ZHENG X, TEN HAGEN B, Kaiser A, et al. Non-Gaussian statistics for the motion of self-propelled Janus particles:Experiment versus theory[J]. Physical Review E, 2013, 88(3):032304. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1308.5389
    [14]
    NOURHANI A, CRESPI V H, LAMMERT P E, et al. Self-electrophoresis of spheroidal electrocatalytic swimmers[J]. Physics of Fluids, 2015, 27(9):092002. doi: 10.1063/1.4929518
    [15]
    JIANG H R, YOSHINAGA N, SANO M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam[J]. Physical Review Letters, 2010, 105(26):268302. doi: 10.1103/PhysRevLett.105.268302
    [16]
    HU C Z, PANé S, Nelson B J, et al. Soft micro-and nanorobotics[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1:53-75. doi: 10.1146/annurev-control-060117-104947
    [17]
    MEDINA-SÁNCHEZ M, MAGDANZ V, GUIX M, et al. Swimming microrobots:soft, reconfigurable, and smart[J]. Advanced Functional Materials, 2018, 28(25):1707228. doi: 10.1002/adfm.201707228
    [18]
    LI J X, DE ÁVILA B E F, GAO W, et al. Micro/nanorobots for biomedicine:Delivery, surgery, sensing, and detoxification[J]. Science Robotics, 2017, 2(4):eaam6431. doi: 10.1126/scirobotics.aam6431
    [19]
    WANG S N, LIU X J, WANG Y, et al. Biocompatibility of artificial micro/nanomotors for use in biomedicine[J]. Nanoscale, 2019, 11(30):14099-14112. doi: 10.1039/C9NR03393A
    [20]
    PARMAR J, VILELA D, VILLA K, et al. Micro-and nanomotors as active environmental microcleaners and sensors[J]. Journal of the American Chemical Society, 2018, 140(30):9317-9331. doi: 10.1021/jacs.8b05762
    [21]
    KAGAN D, CARVO-MARZAL P, BALASUBRAMANIAN S, et al. Chemical sensing based on catalytic nanomotors:motion-based detection of trace silver[J]. Journal of the American Chemical Society, 2009, 131(34):12082-12083. doi: 10.1021/ja905142q
    [22]
    JURADO-SÁNCHEZ B, SATTAYASAMITSATHIT S, GAO W, et al. Self-propelled activated carbon Janus micromotors for efficient water purification[J]. Small, 2015, 11(4):499-506. doi: 10.1002/smll.201402215
    [23]
    SRIVASTAVA S K, GUIX M, SCHMIDT O G. Wastewater mediated activation of micromotors for efficient water cleaning[J]. Nano Letters, 2016, 16(1):817-821. doi: 10.1021/acs.nanolett.5b05032
    [24]
    MALLORY S A, VALERIANI C, CACCIUTO A. An active approach to colloidal self-assembly[J]. Annual Review of Physical Chemistry, 2018, 69(1):59-79. doi: 10.1146/annurev-physchem-050317-021237
    [25]
    BRICARD A, CAUSSIN J B, DESREUMAUX N, et al. Emergence of macroscopic directed motion in populations of motile colloids[J]. Nature, 2013, 503(7474):95-98. doi: 10.1038/nature12673
    [26]
    HOWSE J R, JONES R A, RYAN A J, et al. Self-motile colloidal particles:from directed propulsion to random walk[J]. Physical Review Letters, 2007, 99(4):048102. doi: 10.1103/PhysRevLett.99.048102
    [27]
    EBBENS S J, HOWSE J R. Direct observation of the direction of motion for spherical catalytic swimmers[J]. Langmuir, 2011, 27(20):12293-12296. doi: 10.1021/la2033127
    [28]
    ZHANG J, ZHENG X, CUI H H, et al. The self-propulsion of the spherical Pt-SiO2 Janus micro-motor[J]. Micromachines, 2017, 8(4):123. doi: 10.3390/mi8040123
    [29]
    张静, 郑旭, 王雷磊, 等.气泡推进型中空Janus微球运动特性的实验研究[J].实验流体力学, 2017, 31(2):61-66. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract11012.shtml

    ZHANG J, ZHENG X, WANG L L, et al. Experimental study on the characteristic motion of bubble propelled hollow Janus microspheres[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2):61-66. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract11012.shtml
    [30]
    MORAN J L, POSNER J D. Phoretic self-propulsion[J]. Annual Review of Fluid Mechanics, 2017, 49:511-540. doi: 10.1146/annurev-fluid-122414-034456
    [31]
    GOMEZ-SOLANO J R, BLOKHUIS A, BECHINGER C. Dynamics of self-propelled Janus particles in viscoelastic fluids[J]. Physical Review Letters, 2016, 116(13):138301. doi: 10.1103/PhysRevLett.116.138301
    [32]
    KARANI H, PRADILLO G, VLAHOVSKA P M. Tuning the random walk of active colloids:from individual run-and-tumble to dynamic clustering[J]. Physical Review Letters, 2019, 123(20):208002. doi: 10.1103/PhysRevLett.123.208002
    [33]
    REIGH S, HUANG M, LOWEN H, et al. Active rotational dynamics of a self-diffusiophoretic colloidal motor[J]. Soft Matter, 2020, 16(5):1236-1245. doi: 10.1039/C9SM01977D
    [34]
    XUE C D, ZHENG X, CHEN K K, et al. Probing non-Gaussianity in confined diffusion of nanoparticles[J]. Journal of Physical Chemistry Letters, 2016, 7(3):514-519. doi: 10.1021/acs.jpclett.5b02624
    [35]
    WONG I Y, GARDEL M L, REICHMAN D R, et al. Anomalous diffusion probes microstructure dynamics of entangled F-actin networks[J]. Physical Review Letters, 2004, 92(17):178101. doi: 10.1103/PhysRevLett.92.178101
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (186) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return