Volume 34 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
GUAN Dongshi, LI Hangyu, TONG Penger. Experimental methods and recent progress in biomechanics using atomic force microscopy[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 57-66. doi: 10.11729/syltlx20200026
Citation: GUAN Dongshi, LI Hangyu, TONG Penger. Experimental methods and recent progress in biomechanics using atomic force microscopy[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 57-66. doi: 10.11729/syltlx20200026

Experimental methods and recent progress in biomechanics using atomic force microscopy

doi: 10.11729/syltlx20200026
  • Received Date: 2020-03-01
  • Rev Recd Date: 2020-03-23
  • Publish Date: 2020-04-25
  • As a micro-and nano-scale mechanical tool, Atomic Force Microscopy (AFM) is increasingly used in the experimental study of the biomechanics and promotes the further development of this interdisciplinary field. Using a variety of operation modes and modified probes, the AFM can carry out mechanical measurements on living matter at multiple scales, from subcellular structures to living cells and tissues. It can be used to study variations of the mechanical properties during different living processes, such as aging and cancerization. In this article, we will review the working principle of AFM, its experimental implementations in biomechanical measurements, and the applications of the AFM in the study of the mechanical properties of the whole cell and local variations, liquid-liquid phase-separated droplets, and epithelial cysts. We also analyze the effects of complex fluids and micro-and nano-scale flows on the AFM measurements, and make an outlook on the development of this field.
  • loading
  • [1]
    INGBER D E. Tensegrity:The architectural basis of cellular mechanotransduction[J]. Annual Review of Physiology, 1997, 59(1):575-599. doi: 10.1146/annurev.physiol.59.1.575
    [2]
    VOGEL V, SHEETZ M. Local force and geometry sensing regulate cell functions[J]. Nature Reviews Molecular Cell Biology, 2006, 7(4):265-275. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026765216/
    [3]
    JANMEY P A, MCCULLOCH C A. Cell Mechanics:Integrat-ing cell responses to mechanical stimuli[J]. Annual Review of Biomedical Engineering, 2007, 9(1):1-34. doi: 10.1146/annurev.bioeng.9.060906.151927
    [4]
    KASZA K E, ROWAT A C, LIU J, et al. The cell as a material[J]. Current Opinion in Cell Biology, 2007, 19(1):101-107. doi: 10.1016/j.ceb.2006.12.002
    [5]
    MOEENDARBARY E, HARRIS A R. Cell mechanics:principles, practices, and prospects[J]. Wiley Interdisciplinary Reviews:Systems Biology and Medicine, 2014, 6(5):371-388. doi: 10.1002/wsbm.1275
    [6]
    FLETCHER D A, MULLINS R D. Cell mechanics and the cytoskeleton[J]. Nature, 2010, 463(7280):485-492. doi: 10.1038/nature08908
    [7]
    CHEN D T, WEEKS E R, CROCKER J C, et al. Rheological microscopy:local mechanical properties from microrheology[J]. Physical Review Letters, 2003, 90(10):108301. doi: 10.1103/PhysRevLett.90.108301
    [8]
    LEKKA M, LAIDLER P, GIL D, et al. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy[J]. European Biophysics Journal, 1999, 28(4):312-316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c29a4b8188664c47afa8501decfdbce
    [9]
    NAGAYAMA M, HAGA H, KAWABATA K. Drastic change of local stiffness distribution correlating to cell migration in living fibroblasts[J]. Cell Motility and the Cytoskeleton, 2001, 50(4):173-179. doi: 10.1002/cm.10008
    [10]
    GIRARD P P, CAVALCANTI-ADAM E A, KEMKEMER R, et al. Cellular chemomechanics at interfaces:sensing, integra-tion and response[J]. Soft Matter, 2007, 3(3):307. doi: 10.1039/b614008d
    [11]
    HOCHMUTH R M. Micropipette aspiration of living cells[J]. Journal of Biomechanics, 2000, 33(1):15-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ae1401bcb1075d0d828e9512469bda9
    [12]
    SÁNCHEZ D, JOHNSON N, LI Chao, et al. Noncontact measurement of the local mechanical properties of living cells using pressure applied via a pipette[J]. Biophysical Journal, 2008, 95(6):3017-3027. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a91f48d7e1977917b5221e016d547423
    [13]
    MOEENDARBARY E, VALON L, FRITZSCHE M, et al. The cytoplasm of living cells behaves as a poroelastic material[J]. Nature Materials, 2013, 12(3):253-261. doi: 10.1038/nmat3517
    [14]
    AMBLARD F, MAGGS A C, YURKE B, et al. Subdiffusion and anomalous local viscoelasticity in actin networks[J]. Physical Review Letters, 1996, 77(21):4470-4473. doi: 10.1103/PhysRevLett.77.4470
    [15]
    DAI J W, SHEETZ M P. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers[J]. Biophysical Journal, 1995, 68(3):988-996. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1281822
    [16]
    HOFFMAN B D, MASSIERA G, VAN CITTERS K M, et al. The consensus mechanics of cultured mammalian cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27):10259-10264. doi: 10.1073/pnas.0510348103
    [17]
    MVLLER D J, DUFRÊNE Y F. Atomic force microscopy:a nanoscopic window on the cell surface[J]. Trends in Cell Biology, 2011, 21(8):461-469. doi: 10.1016/j.tcb.2011.04.008
    [18]
    SOKOLOV I, DOKUKIN M E, GUZ N V. Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments[J]. Methods, 2013, 60(2):202-213. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=288dba8df2c7972743aa78f753681308
    [19]
    STEWART M P, HELENIUS J, TOYODA Y, et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding[J]. Nature, 2011, 469(7329):226-230. doi: 10.1038/nature09642
    [20]
    FISCHER-FRIEDRICH E, TOYODA Y, CATTIN C J, et al. Rheology of the active cell cortex in mitosis[J]. Biophysical Journal, 2016, 111(3):589-600. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a4e6f9dcfa4430841d084fa069b7fe44
    [21]
    MATZKE R, JACOBSON K, RADMACHER M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells[J]. Nature Cell Biology, 2001, 3(6):607-610. doi: 10.1038/35078583
    [22]
    STEWART M P, TOYODA Y, HYMAN A A, et al. Force probing cell shape changes to molecular resolution[J]. Trends in Biochemical Sciences, 2011, 36(8):444-450. doi: 10.1016/j.tibs.2011.05.001
    [23]
    CAPPELLA B, DIETLER G. Force-distance curves by atomic force microscopy[J]. Surface Science Reports, 1999, 34(1-3):1-104. doi: 10.1016/S0167-5729(99)00003-5
    [24]
    WANG Y J, XU Z L, SHENG P, et al. Electric-field-induced forces between two surfaces filled with an insulating liquid:the role of adsorbed water[J]. The European Physical Journal Applied Physics, 2014, 66(3):31301. doi: 10.1051/epjap/2014130388
    [25]
    KOHOUTEK J, DEY D, BONAKDAR A, et al. Opto-mechanical force mapping of deep subwavelength plasmonic modes[J]. Nano Letters, 2011, 11(8):3378-3382. doi: 10.1021/nl201780y
    [26]
    MA D K, GARRETT J L, MUNDAY J N. Quantitative measurement of radiation pressure on a microcantilever in ambient environment[J]. Applied Physics Letters, 2015, 106(9):091107. doi: 10.1063/1.4914003
    [27]
    GUAN D S, HANG Z H, MARCET Z, et al. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM[J]. Scientific Reports, 2015, 5:16216. doi: 10.1038/srep16216
    [28]
    WANG Y J, GUO S, CHEN H Y, et al. Understanding contact angle hysteresis on an ambient solid surface[J]. Physical Review E, 2016, 93(5):052802. doi: 10.1103/PhysRevE.93.052802
    [29]
    XIONG X, GUO S, XU Z, et al. Development of an atomic-force-microscope-based hanging-fiber rheometer for interfacial microrheology[J]. Physical Review E, 2009, 80(6 Pt 1):061604. http://adsabs.harvard.edu/abs/2009PhRvE..80f1604X
    [30]
    GUAN D S, WANG Y J, CHARLAIX E, et al. Asymmetric and speed-dependent capillary force hysteresis and relaxation of a suddenly stopped moving contact line[J]. Physical Review Letters, 2016, 116(6):066102. doi: 10.1103/PhysRevLett.116.066102
    [31]
    GUAN D S, WANG Y J, CHARLAIX E, et al. Simultaneous observation of asymmetric speed-dependent capillary force hysteresis and slow relaxation of a suddenly stopped moving contact line[J]. Physical Review E, 2016, 94(4):042802. doi: 10.1103/PhysRevE.94.042802
    [32]
    GUAN D S, BARRAUD C, CHARLAIX E, et al. Noncontact viscoelastic measurement of polymer thin films in a liquid medium using long-needle atomic force microscopy[J]. Langmuir, 2017, 33:1385-1390. doi: 10.1021/acs.langmuir.6b04066
    [33]
    SHU Y W, CHAN H N, GUAN D S, et al. A simple fabricated thickness-based stiffness gradient for cell studies[J]. Science Bulletin, 2017, 62(3):222-228. doi: 10.1016/j.scib.2016.12.012
    [34]
    SHEN Y S, GUAN D S, SERIEN D, et al. Mechanical characterization of microengineered epithelial cysts by using atomic force microscopy[J]. Biophysical Journal, 2017, 112(2):398-409. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b2eeb28b2ccc894b87afd81db78206c
    [35]
    ZENG M L, CHEN X D, GUAN D S, et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity[J]. Cell, 2018, 174(5):1172-1187. doi: 10.1016/j.cell.2018.06.047
    [36]
    GUAN D S, CHARLAIX E, QI R Z, et al. Noncontact viscoelastic imaging of living cells using a long-needle atomic force microscope with dual-frequency modulation[J]. Physical Review Applied, 2017, 8(4):044010. doi: 10.1103/PhysRevApplied.8.044010
    [37]
    龙勉.细胞-分子层次的多尺度力学-化学-生物学耦合[J].医用生物力学, 2016, 31(4):327-332. http://d.old.wanfangdata.com.cn/Periodical/yyswlx201604005

    LONG M. Multiscale mechano-chemo-biological coupling at cellular and molecular levels[J]. Journal of Medical Biomech-anics, 31(4):327-332. http://d.old.wanfangdata.com.cn/Periodical/yyswlx201604005
    [38]
    陈恩惠, 杨锦鸿, 李栋, 等.软物质中的理性连续介质力学基础[J].物理学报, 2016, 65(18):79-100. http://d.old.wanfangdata.com.cn/Periodical/wlxb201623036

    CHEN E H, YANG J H, LI D, et al.On the theoretical basis of rational continuum mechanics in softmatter[J]. Acta Physica Sinica, 2016, 65(18):79-100. http://d.old.wanfangdata.com.cn/Periodical/wlxb201623036
    [39]
    姜宗来.从生物力学到力学生物学的进展[J].力学进展, 2017, 47(1):309-332. http://d.old.wanfangdata.com.cn/Periodical/lxjz201701009

    JIANG Z L. Advance from biomechanics to mechanobiology[J]. Advances In Mechanics, 2017, 47(1):309-332. http://d.old.wanfangdata.com.cn/Periodical/lxjz201701009
    [40]
    BUTT H J, JASCHKE M. Calculation of thermal noise in atomic force microscopy[J]. Nanotechnology, 1999, 6(1):1.
    [41]
    JANSHOFF A, NEITZERT M, OBERDÖRFER Y, et al. Force spectroscopy of molecular systems-single molecule spectroscopy of polymers and biomolecules[J]. Angewandte Chemie (International Edition), 2000, 39(18):3212-3237. https://www.deepdyve.com/lp/wiley/force-spectroscopy-of-molecular-systems-single-molecule-spectroscopy-SN9is3RHi0
    [42]
    LI M, TANG H X, ROUKES M L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications[J]. Nature Nanotechnology, 2007, 2(2):114-120. doi: 10.1038/nnano.2006.208
    [43]
    GARCÍA R, RUBÉN P. Dynamic atomic force microscopy methods[J]. Surface Science Reports, 2002, 47(6-8):197-301. doi: 10.1016/S0167-5729(02)00077-8
    [44]
    WALTERS D A, CLEVELAND J P, THOMSON N H, et al. Short cantilevers for atomic force microscopy[J]. Review of Scientific Instruments, 1996, 67(10):3583-3590. doi: 10.1063/1.1147177
    [45]
    BUTT H, CAPPELLA B, KAPPL M. Force measurements with the atomic force microscope:Technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1):1-152. https://www.sciencedirect.com/science/article/pii/S0167572905000488
    [46]
    CROSS S E, JIN Y S, RAO J Y, et al. Nanomechanical analysis of cells from cancer patients[J]. Nature Nanotechnology, 2007, 2(12):780-783. doi: 10.1038/nnano.2007.388
    [47]
    HERTZ H. On the contact of elastic solids[J]. Journal für die Reine und Angewandte Mathematik, 1882, 92:156-171. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0805.0712
    [48]
    KOLLMANNSBERGER P, FABRY B. Linear and nonlinear rheology of living cells[J]. Annual Review of Materials Re-search, 2011, 41(1):75-97. doi: 10.1146/annurev-matsci-062910-100351
    [49]
    BRANGWYNNE C P, ECKMANN C R, COURSON D S, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation[J]. Science, 2009, 324(5935):1729-1732. doi: 10.1126/science.1172046
    [50]
    BANANI S F, LEE H O, HYMAN A A, et al. Biomolecular condensates:organizers of cellular biochemistry[J]. Nature Reviews Molecular Cell Biology, 2017, 18(5):285-298. doi: 10.1038/nrm.2017.7
    [51]
    LEROY S, CHARLAIX E. Hydrodynamic interactions for the measurement of thin film elastic properties[J]. Journal of Fluid Mechanical, 2011, 674:389-407. doi: 10.1017/S0022112010006555
    [52]
    BRENNER H. The slow motion of a sphere through a viscous fluid towards a plane surface[J]. Chemical Engineering Science, 1961, 16:241-251. doi: 10.1016-0009-2509(61)80035-3/
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (510) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return