Volume 35 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
LIAN Huan, GU Hongbin, ZHOU Ruixu, et al. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 97-108. doi: 10.11729/syltlx20200069
Citation: LIAN Huan, GU Hongbin, ZHOU Ruixu, et al. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 97-108. doi: 10.11729/syltlx20200069

Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments

doi: 10.11729/syltlx20200069
  • Received Date: 2020-05-22
  • Rev Recd Date: 2020-10-15
  • Publish Date: 2021-02-25
  • Experiments are designed to investigate the transient fluid-combustion phenomenon during simulated transient acceleration and deceleration between flight Ma5.0~6.0. Flow induced ram-scram mode transition and thrust abruption were observed. The transient fluid-combustion evolutions were characterized with high speed Schlieren imaging and summarized into four phases. The fluid phenomena were discussed based on the impulse function analysis. The accumulated heat release from the thermodynamic cycle analysis dominates the mode transition and thrust abruption process. The isolator pseudo-combustion shock train system is the dominating flow feature during the mode transition. The backpressure induced by the supersonic crossflow contributes to maintain thrust. In addition, the heat transfer and boundary layer disturbance could shift the combustion mode transition limits.
  • loading
  • [1]
    BUILDER C H. On the thermodynamic spectrum of airbreath-ing propulsion[R]. AIAA 1964-243, 1964. doi: 10.2514/6.1964-243
    [2]
    HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Washington, DC: AIAA, Inc., 1994. doi: 10.2514/4.470356
    [3]
    MERCIER R, RONALD T. Hypersonic technology (HyTech) program overview[R]. AIAA 1998-1566, 1998. doi: 10.2514/6.1998-1566
    [4]
    乐嘉陵, 胡欲立, 刘陵. 双模态超燃冲压发动机研究进展[J]. 流体力学实验与测量, 2000, 14(1): 1-12. doi: 10.3969/j.issn.1672-9897.2000.01.001

    LE J L, HU Y L, LIU L. Investigation of possibilities in developing dual-mode scramjets[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(1): 1-12. doi: 10.3969/j.issn.1672-9897.2000.01.001
    [5]
    刘陵, 刘敬华, 张榛, 等. 超声速燃烧与超声速燃烧冲压发动机[M]. 西安: 西北工业大学出版社, 1993.
    [6]
    冯志高, 关成启, 张红文. 高超声速飞行器概论[M]. 北京: 北京理工大学出版社, 2016.

    FENG Z G, GUAN C Q, ZHANG H W. An introduction to hypersonic aircraft[M]. Beijing: Beijing institute of technology press, 2016.
    [7]
    SULLINS G A. Demonstration of mode transition in a scramjet combustor[J]. Journal of Propulsion and Power, 1993, 9(4): 515-520. doi: 10.2514/3.23653
    [8]
    PRATT D, HEISER W. Isolator-combustor interaction in a dual-mode scramjet engine[R]. AIAA 1993-358, 1993. doi: 10.2514/6.1993-358
    [9]
    张鹏, 俞刚. 超燃燃烧室一维流场分析模型的研究[J]. 流体力学实验与测量, 2003, 17(1): 88-92. doi: 10.3969/j.issn.1672-9897.2003.01.022

    ZHANG P, YU G. The study of one-dimensional flow analysis model of the combustor in supersonic combustion experiments[J]. Experiments and Measurements in Fluid Mechanics, 2003, 17(1): 88-92. doi: 10.3969/j.issn.1672-9897.2003.01.022
    [10]
    郑小梅, 徐大军, 蔡国飙. 超燃冲压发动机性能的初步分析[J]. 航空学报, 2007, 28(S1): 35-41. doi: 10.3321/j.issn:1000-6893.2007.z1.007

    ZHENG X M, XU D J, CAI G B. A preliminary study on hypersonic airbreathing engine performance[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(S1): 35-41. doi: 10.3321/j.issn:1000-6893.2007.z1.007
    [11]
    余勇, 刘卫东, 王振国. 超声速燃烧室性能一维数值模拟[J]. 流体力学实验与测量, 2004, 18(3): 36-41. doi: 10.3969/j.issn.1672-9897.2004.03.008

    YU Y, LIU W D, WANG Z G. A one-dimensional numerical analysis of supersonic combustor performance[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(3): 36-41. doi: 10.3969/j.issn.1672-9897.2004.03.008
    [12]
    陈军. Ma4~7双模态冲压发动机燃烧室热力工作过程与性能潜力研究[D]. 四川绵阳: 中国空气动力研究与发展中心, 2016.

    CHEN J. The relationship between thermal process and potential performance in dual-mode scramjet at Ma4~7[D]. Mianyang, Sichuan: China Aerodynamics Research and Development Center, 2016.
    [13]
    陈强, 陈立红, 顾洪斌, 等. 释热分布对超燃冲压发动机性能的影响及优化[J]. 推进技术, 2009, 30(2): 135-138. doi: 10.3321/j.issn:1001-4055.2009.02.002

    CHEN Q, CHEN L H, GU H B, et al. Investigation of the effect and optimization of heat release distributions in the combustor on scramjet performance[J]. Journal of Propulsion Technology, 2009, 30(2): 135-138. doi: 10.3321/j.issn:1001-4055.2009.02.002
    [14]
    MATSUO K, MIYAZATO Y, KIM H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences, 1999, 35(1): 33-100. doi: 10.1016/S0376-0421(98)00011-6
    [15]
    WALTRUP P J, BILLIG F S. Structure of shock waves in cylindrical ducts[J]. AIAA Journal, 1973, 11(10): 1404-1408. doi: 10.2514/3.50600
    [16]
    CARROLL B F, DUTTON J C. Characteristics of multiple shock wave/turbulent boundary-layer interactions in rectangular ducts[J]. Journal of Propulsion and Power, 1990, 6(2): 186-193. doi: 10.2514/3.23243
    [17]
    CARROLL B F, DUTTON J C. Turbulence phenomena in a multiple normal shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 1992, 30(1): 43-48. doi: 10.2514/3.10880
    [18]
    CARROLL B F, LOPEZ-FERNANDEZ P A, DUTTON J C. Computations and experiments for a multiple normal shock/boundary-layer interaction[J]. Journal of Propulsion and Power, 1993, 9(3): 405-411. doi: 10.2514/3.23636
    [19]
    SMART M. Scramjet isolators[R]. RTO-EN-AVT-185, 2010.
    [20]
    WIETING A R. Exploratory study of transient upstart phenomena in a three-dimensional fixed-geometry scramjet engine[R]. NASA-TN-D-8156, 1976. https://ntrs.nasa.gov/citations/19760013056
    [21]
    RODI P E, EMAMI S, TREXLER C A. Unsteady pressure behavior in a ramjet/scramjet inlet[J]. Journal of Propulsion and Power, 1996, 12(3): 486-493. doi: 10.2514/3.24061
    [22]
    DO H, IM S K, MUNGAL M G, et al. The influence of boundary layers on supersonic inlet flow unstart induced by mass injection[J]. Experiments in Fluids, 2011, 51(3): 679-691. doi: 10.1007/s00348-011-1077-3
    [23]
    田野, 杨顺华, 邓维鑫, 等. 超燃冲压发动机燃烧室空气节流技术研究[J]. 推进技术, 2014, 35(4): 499-506. doi: 10.13675/j.cnki.tjjs.2014.03.014

    TIAN Y, YANG S H, DENG W X, et al. A study on air throttling technology in scramjet combustor[J]. Journal of Propulsion Technology, 2014, 35(4): 499-506. doi: 10.13675/j.cnki.tjjs.2014.03.014
    [24]
    MITANI T, CHINZEI N, KANDA T. Reaction and mixing-controlled combustion in scramjet engines[J]. Journal of Propulsion and Power, 2001, 17(2): 308-314. doi: 10.2514/2.5743
    [25]
    CHUN J, SCHEUERMANN T, VON WOLFERSDORF J, et al. Experimental study on combustion mode transition in a scramjet with parallel injection[R]. AIAA 2006-8063, 2006. doi: 10.2514/6.2006-8063
    [26]
    TAKAHASHI S, DEMISE S, OSHITA M, et al. Correlation between heat flux distribution and combustion mode in a scramjet combustor[J]. Physics Letters B, 2001, 663(s1-2): 107-110. http://www.irgrid.ac.cn/handle/1471x/699393
    [27]
    LE D B, GOYNE C P, KRAUSS R H, et al. Experimental study of a dual-mode scramjet isolator[J]. Journal of Propulsion and Power, 2008, 24(5): 1050-1057. doi: 10.2514/1.32591
    [28]
    ZHANG C L, CHANG J T, MA J X, et al. Effect of Mach number and equivalence ratio on the pressure rising variation during combustion mode transition in a dual-mode combustor[J]. Aerospace Science and Technology, 2018, 72: 516-524. doi:10.1016/j.ast.2017. 11.042
    [29]
    肖保国, 李莉, 张顺平, 等. 超燃冲压发动机燃烧模态转换直连式实验研究[J]. 推进技术, 2019, 40(2): 339-346. doi: 10.13675/j.cnki.tjjs.170760

    XIAO B G, LI L, ZHANG S P, et al. Direct-connect experimental investigation of combustion mode transition for scramjet engine[J]. Journal of Propulsion Technology, 2019, 40(2): 339-346. doi: 10.13675/j.cnki.tjjs.170760
    [30]
    FOTIA M L. Mechanics of combustion mode transition in a direct-connect ramjet-scramjet experiment[J]. Journal of Propulsion and Power, 2014, 31(1): 69-78. doi: 10.2514/1.B35171
    [31]
    ZHANG C L, CHANG J T, FENG S, et al. Pressure rising slope variation accompanying with combustion mode transition in a dual-mode combustor[J]. Aerospace Science and Technology, 2017, 68: 370-379. doi: 10.1016/j.ast.2017.05.034
    [32]
    ZHANG C, YANG Q C, CHANG J T, et al. Nonlinear characteristics and detection of combustion modes for a hydrocarbon fueled scramjet[J]. Acta Astronautica, 2015, 110: 89-98. doi: 10.1016/j.actaastro.2014.11.023
    [33]
    CAO R F, CHANG J T, BAO W, et al. Analysis of combustion mode and operating route for hydrogen fueled scramjet engine[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5928-5935. doi: 10.1016/j.ijhydene.2013.02.135
    [34]
    BAO W, YANG Q C, CHANG J T, et al. Dynamic characteristics of combustion mode transitions in a strut-based scramjet combustor model[J]. Journal of Propulsion and Power, 2013, 29(5): 1244-1248. doi: 10.2514/1.B34921
    [35]
    ZHANG C L, CHANG J T, ZHANG Y S, et al. Flow field characteristics analysis and combustion modes classification for a strut/cavity dual-mode combustor[J]. Acta Astronautica, 2017, 137: 44-51. doi: 10.1016/j.actaastro.2017.03.023
    [36]
    YANG Q C, HU J C, CHANG J T, et al. Experimental study on combustion mode transition effects in a strut-based scramjet combustor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(4): 764-771. doi: 10.1177/0954410014539288
    [37]
    CAO R F, CHANG J T, TANG J F, et al. Study on combustion mode transition of hydrogen fueled dual-mode scramjet engine based on thermodynamic cycle analysis[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21251-21258. doi: 10.1016/j.ijhydene.2014.10.082
    [38]
    YANG Q C, CHANG J T, BAO W, et al. A mechanism of combustion mode transition for hydrogen fueled scramjet[J]. International Journal of Hydrogen Energy, 2014, 39(18): 9791-9797. doi: 10.1016/j.ijhydene.2014.04.090
    [39]
    FOTIA M L, DRISCOLL J F. Isolator-combustor interactions in a direct-connect ramjet-scramjet experiment[J]. Journal of Propulsion and Power, 2012, 28(1): 83-95. doi: 10.2514/1.B34367
    [40]
    FOTIA M L, DRISCOLL J F. Ram-scram transition and flame/shock-train interactions in a model scramjet experiment[J]. Journal of Propulsion and Power, 2012, 29(1): 261-273. doi: 10.2514/1.B34486
    [41]
    浮强, 宋文艳, 石德永, 等. 来流总温对双模态燃烧室模态转换边界的影响[J]. 航空动力学报, 2019, 34(5): 1119-1126. doi: 10.13224/j.cnki.jasp.2019.05.018

    FU Q, SONG W Y, SHI D Y, et al. Effects of incoming flow total temperature on mode transition boundary in dual mode scramjet combustor[J]. Journal of Aerospace Power, 2019, 34(5): 1119-1126. doi: 10.13224/j.cnki.jasp.2019.05.018
    [42]
    MASUMOTO R, TOMIOKA S, KUDO K, et al. Experi-mental study on combustion modes in a supersonic combustor[J]. Journal of Propulsion and Power, 2011, 27(2): 346-355. doi: 10.2514/1.B34020
    [43]
    MENG Y, GU H B, ZHUANG J H, et al. Experimental study of mode transition characteristics of a cavity-based scramjet combustor during acceleration[J]. Aerospace Science and Technology, 2019, 93: 105316. doi: 10.1016/j.ast.2019.105316
    [44]
    潘余, 李大鹏, 刘卫东, 等. 超燃冲压发动机燃烧模态转换试验研究[J]. 爆炸与冲击, 2008, 28(4): 293-297. doi: 10.3321/j.issn:1001-1455.2008.04.002

    PAN Y, LI D P, LIU W D, et al. Combustion mode transition in a scramjet engine[J]. Explosion and Shock Waves, 2008, 28(4): 293-297. doi:10. 3321/j.issn:1001-1455.2008.04.002
    [45]
    KANDA T, CHINZEI N, KUDO K, et al. Dual-mode operations in a scramjet combustor[J]. Journal of Propulsion and Power, 2004, 20(4): 760-763. doi: 10.2514/1.3683
    [46]
    KOBAYASHI K, TOMIOKA S, KATO K, et al. Performance of a dual-mode combustor with multistaged fuel injection[J]. Journal of Propulsion and Power, 2006, 22(3): 518-526. doi: 10.2514/1.19294
    [47]
    KOUCHI T, MASUYA G, MITANI T, et al. Mechanism and control of combustion-mode transition in a scramjet engine[J]. Journal of Propulsion and Power, 2012, 28(1): 106-112. doi: 10.2514/1.B34172
    [48]
    WANG Z G, SUN M B, WANG H B, et al. Mixing-related low frequency oscillation of combustion in an ethylene-fueled supersonic combustor[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2137-2144. doi: 10.1016/j.proci.2014.09.005
    [49]
    SUN M B, WANG Z G, LIANG J H, et al. Flame characteristics in supersonic combustor with hydrogen injection upstream of cavity flameholder[J]. Journal of Propulsion and Power, 2008, 24(4): 688-696. doi: 10.2514/1.34970
    [50]
    MICKA D J, DRISCOLL J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2397-2404. doi: 10.1016/j.proci.2008.06.192
    [51]
    WANG Z P, LI F, GU H B, et al. Experimental study on the effect of combustor configuration on the performance of dual-mode combustor[J]. Aerospace Science and Technology, 2015, 42: 169-175. doi: 10.1016/j.ast.2015.01.008
    [52]
    YUAN Y M, ZHANG T C, YAO W, et al. Characterization of flame stabilization modes in an ethylene-fueled supersonic combustor using time-resolved CH* chemiluminescence[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2919-2925. doi: 10.1016/j.proci.2016.07.040
    [53]
    NAKAYA S, KINOSHITA R, LEE J, et al. Analysis of supersonic combustion characteristics of ethylene/methane fuel mixture on high-speed measurements of CH* chemiluminescence[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3749-3756. doi: 10.1016/j.proci.2018.09.011
    [54]
    SHE Z S, ZOU H Y, XIAO M J, et al. Prediction of compressible turbulent boundary layer via a symmetry-based length model[J]. Journal of Fluid Mechanics, 2018, 857: 449-468. doi: 10.1017/jfm.2018.710
    [55]
    LI X, TONG F L, YU C P, et al. Statistical analysis of temperature distribution on vortex surfaces in hypersonic turbulent boundary layer[J]. Physics of Fluids, 2019, 31(10): 106101. doi: 10.1063/1.5115541
    [56]
    周芮旭, 连欢, 顾洪斌, 等. 激光诱导荧光聚焦纹影系统及超声速燃烧流场应用[J]. 气体物理, 2020, 5(2): 14-19. doi: 10.19527/j.cnki.2096-1642.0799

    ZHOU R X, LIAN H, GU H B, et al. Laser-induced fluorescence focusing schlieren system and its application in scramjet combustor[J]. Physics of Gases, 2020, 5(2): 14-19. doi: 10.19527/j.cnki.2096-1642.0799
    [57]
    LIAN H, GU H B, YUE L J, et al. Characterization of combustion oscillations in a cavity flame holder during acceleration experiments[C]//Proc of the 1st International Conference on High-Speed Vehicle Science Technology.2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (300) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return