Volume 35 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
XIANG Honghui, GAO Jie, YANG Rongfei, et al. Effect of probe support wake on vibration characteristics of compressor rotor blade[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 58-66. doi: 10.11729/syltlx20200070
Citation: XIANG Honghui, GAO Jie, YANG Rongfei, et al. Effect of probe support wake on vibration characteristics of compressor rotor blade[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 58-66. doi: 10.11729/syltlx20200070

Effect of probe support wake on vibration characteristics of compressor rotor blade

doi: 10.11729/syltlx20200070
  • Received Date: 2020-06-01
  • Rev Recd Date: 2020-06-28
  • Publish Date: 2021-04-01
  • In order to understand the abnormal phenomenon of sudden increase of the vibration strain of the first rotor blade in an axial flow compressor experiment, the comparison experiment of the effects of different kinds of inlet measurement probes on vibration characteristics of the rotor blades was conducted. By comparing the variation of the rotor blade vibration signals under different installation layouts of inlet measurement probes, it is verified that the abnormal vibration of the rotor blade is caused by the inlet measurement probes. The flow mechanism of the probe support wake inducing the resonance of rotor blade was also analyzed using the fluid-structure coupling numerical simulation method. The investigation results show that the first order resonance of the rotor blade of the axial flow compressor emerges under an engine order excitation condition, which is induced by the cylindrical probe support with the diameter of 10 mm. As the size of the probe support decreases, the level of the rotor blade vibration response is reduced evidently. The disturbance frequency of the probe-support-induced-compressor-rotor-blade-resonance originates from the combined effect of the wake induction frequency and the passing frequency of the probe support. The shedding vortex of the probe support wake can cause large amplitude fluctuation of the inlet attack angle of the rotor blade.
  • loading
  • [1]
    JONES M J, BIRCH N T, BRADBROOK S J. Evolutions in aircraft engine design and a vision for the future[R]. ISABE-2002-1014, 2001.
    [2]
    BROICHHAUSEN K D, ZIEGLER K U. Supersonic and transonic compressors: past, status and technology trends[C]//Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air. 2008. doi: 10.1115/GT2005-69067
    [3]
    MILLER R J, MOSS R W, AINSWORTH R W, et al. Time-resolved vane-rotor interaction in a high-pressure turbine stage[J]. Journal of Turbomachinery, 2003, 125(1): 1-13. doi: 10.1115/1.1492823
    [4]
    王英锋, 胡骏, 李传鹏, 等. 上游转子对下游静子叶片气动力的影响[J]. 航空学报, 2006, 27(4): 545-550. doi: 10.3321/j.issn:1000-6893.2006.04.001

    WANG Y F, HU J, LI C P, et al. Effects of up-stream rotor on the aerodynamic force on down-stream stator blades[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 545-550. doi: 10.3321/j.issn:1000-6893.2006.04.001
    [5]
    DUDZINSKI T J, KRAUSE L N. Effect of inlet geometry on flow-angle characteristics of miniature total-pressure tubes[R]. NASA TN D-6460, 1971.
    [6]
    COLDRICK S, IVEY P, WELLS R. Considerations for using 3D pneumatic probes in high speed axial compressors[C]//Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. 2009. doi: 10.1115/GT2002-30045
    [7]
    LEPICOVSKY J. Effects of a rotating aerodynamic probe on the flow field of a compressor rotor[R]. NASA/CR-2008-215215, 2008.
    [8]
    MA H W, LI S H, WEI W. Effects of probe support on the flow field of a low-speed axial compressor[J]. Journal of Thermal Science, 2014, 23(2): 120-126. doi: 10.1007/s11630-014-0685-7
    [9]
    MA H W, LI S H, WEI W. Effects of probe support on the stall characteristics of a low-speed axial compressor[J]. Journal of Thermal Science, 2016, 25(1): 43-49. doi: 10.1007/s11630-016-0832-4
    [10]
    HE X, MA H W, REN M L, et al. Investigation of the effects of airfoil-probes on the aerodynamic performance of an axial compressor[J]. Chinese Journal of Aeronautics, 2012, 25(4): 517-523. doi: 10.1016/S1000-9361(11)60415-9
    [11]
    XIANG H H, GE N, HOU M J, et al. An experimental investigation of the effects of upstream probe disturbance on compressor cascade performance[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(7): 1248-1257. doi: 10.1177/0954410016652435
    [12]
    XIANG H H, GE N, GAO J, et al. Experimental investigation of the effect of the probe support tail structure on the compressor cascade flow field[J]. International Journal of Turbo & Jet-Engines, 2019, 36(1): 9-18. doi: 10.1515/tjj-2016-0071
    [13]
    WISLER D C. Core compressor exit stage study. Volume 3: Data and performance report for screening test configurations[R]. NASA CR-159499, 1980.
    [14]
    KENYON J A, RABE D C, FLEETER S. Aerodynamic effects on blade vibratory stress variations[J]. Journal of Propulsion and Power, 1999, 15(5): 675-680. doi: 10.2514/2.5492
    [15]
    张明明, 侯安平, 贺小帆, 等. 进气畸变下压气机叶片强度分析[J]. 航空动力学报, 2011, 26(1): 108-114. doi: 10.13224/j.cnki.jasp.2011.01.015

    ZHANG M M, HOU A P, HE X F, et al. Intensity analysis of blades in axial compressor with inlet distortion[J]. Journal of Aerospace Power, 2011, 26(1): 108-114. doi: 10.13224/j.cnki.jasp.2011.01.015
    [16]
    SRINIVASAN A V. Flutter and resonant vibration characteristics of engine blades: an IGTI scholar paper[C]//Proceedings of ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. 2014. doi: 10.1115/97-GT-533
    [17]
    EKICI K, VOYTOVYCH D, HALL K. Time-linearized navier-stokes analysis of flutter in multistage turbomachines[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. doi: 10.2514/6.2005-836
    [18]
    张明明, 李绍斌, 侯安平, 等. 叶轮机械叶片颤振研究的进展与评述[J]. 力学进展, 2011, 41(1): 26-38. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201101004.htm

    ZHANG M M, LI S B, HOU A P, et al. A review of the research on blade flutter in turbomachinery[J]. Advances in Mechanics, 2011, 41(1): 26-38. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201101004.htm
    [19]
    DICKMANN H P, SECALL WIMMEL T, SZWEDOWICZ J, et al. Unsteady flow in a turbocharger centrifugal compressor: three-dimensional computational fluid dynamics simulation and numerical and experimental analysis of impeller blade vibration[J]. Journal of Turbomachinery, 2006, 128(3): 455-465. doi: 10.1115/1.2183317
    [20]
    闫嘉超, 侯安平, 周盛. 非定常耦合流动对叶片动力响应的影响[J]. 航空动力学报, 2010, 25(3): 582-586. doi: 10.13224/j.cnki.jasp.2010.03.011

    YAN J C, HOU A P, ZHOU S. Effect of unsteady cooperative flow on the dynamic response in the rotor of axial compressor[J]. Journal of Aerospace Power, 2010, 25(3): 582-586. doi: 10.13224/j.cnki.jasp.2010.03.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (343) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return