Volume 35 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
DU Jinlin, ZOU Zhengping, HUANG Lin, et al. Experimental and numerical study of squealer tip flow field considering relative casing motion[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 22-36, 82. doi: 10.11729/syltlx20200073
Citation: DU Jinlin, ZOU Zhengping, HUANG Lin, et al. Experimental and numerical study of squealer tip flow field considering relative casing motion[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 22-36, 82. doi: 10.11729/syltlx20200073

Experimental and numerical study of squealer tip flow field considering relative casing motion

doi: 10.11729/syltlx20200073
  • Received Date: 2020-06-10
  • Rev Recd Date: 2020-08-04
  • Publish Date: 2021-04-01
  • The tip leakage flow is an important factor that causes the internal loss of the aeroengine turbine. The squealer tip can effectively control the tip leakage flow. Accurate understanding of the tip leakage flow structures in the cavity contributes to the understanding of the flow characteristics of the leakage flow and the physical mechanism of the leakage loss. In order to study the change of flow structures in the tip cavity when considering the relative casing motion and the effect on the leakage flow, a low-speed turbine cascade testing facility is built that can model the relative casing motion. The test facility can study factors such as blade profiles, different tip structures, and different incidence angles. A visual testing method of Particle Image Velocimetry (PIV) is proposed to obtain the complex flow structures within the tip cavity. The measurement method developed can obtain the complex flow field and successfully capture the scraping vortex in the tip cavity. In addition, the evolution of the flow structures in the tip cavity is analyzed with the help of numerical results under different casing motion conditions. An aero-labyrinth like sealing effect is formed by the scraping vortex. This sealing effect reduces the equivalent flow area at the gap outlet and diminishes the discharge coefficient of the squealer tip, therefore finally achieving the purpose of controlling the leakage flow. Choosing the appropriate blade load distribution and cavity geometry can improve the clogging effect and expand the control range of the scraping vortex. Mid-loaded blades have a more obvious effect on controlling the leakage flow when using the cavity tip. The tip gap height affects the generation and evolution of the flow structure in the tip cavity by which changes the effect of controlling the leakage flow.
  • loading
  • [1]
    CHEN G, DAWES W N, HODSON H P. A numerical and experimental investigation of turbine tip gap flow[C]//Proc of the 29th Joint Propulsion Conference and Exhibit. 1993. doi: 10.2514/6.1993-2253
    [2]
    HEYES F J G, HODSON H P, DAILEY G M. The effect of blade tip geometry on the tip leakage flow in axial turbine cascades[J]. Journal of Turbomachinery, 1992, 114(3): 643-651. doi: 10.1115/1.2929188
    [3]
    ZHOU C. Effects of endwall motion on thermal performance of cavity tips with different squealer width and height[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1248-1258. doi: 10.1016/j.ijheatmasstransfer.2015.07.101
    [4]
    ZOU Z P, SHAO F, LI Y R, et al. Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance[J]. Energy, 2017, 138: 167-184. doi: 10.1016/j.energy.2017.07.047
    [5]
    ZOU Z P, XUAN L M, CHEN Y M, et al. Effects of flow structure on heat transfer of squealer tip in a turbine rotor blade[J]. International Communications in Heat and Mass Transfer, 2020, 114: 104588. doi: 10.1016/j.icheatmasstransfer.2020.104588
    [6]
    YANG D L, FENG Z P. Tip leakage flow and heat transfer predictions for turbine blades[C]//Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air. 2007. doi: 10.1115/GT2007-27728
    [7]
    YANG D L, YU X B, FENG Z P. Investigation of leakage flow and heat transfer in a gas turbine blade tip with emphasis on the effect of rotation[J]. Journal of Turbomachinery, 2010, 132(4): 041010. doi: 10.1115/1.3213560
    [8]
    VIRDI A S, ZHANG Q, HE L, et al. Aerothermal performance of shroudless turbine blade tips with effects of relative casing motion[C]//Proceedings of ASME 2013 Turbine Blade Tip Symposium. 2013. doi: 10.1115/TBTS2013-2021
    [9]
    YARAS M I, SJOLANDER S A. Effects of simulated rotation on tip leakage in a planar cascade of turbine blades: part I-tip gap flow[J]. Journal of Turbomachinery, 1992, 114(3): 652-659. doi: 10.1115/1.2929189
    [10]
    PALAFOX P, OLDFIELD M L G, LAGRAFF J E, et al. PIV maps of tip leakage and secondary flow fields on a low speed turbine blade cascade with moving endwall[C]//Proceedings of the ASME Turbo Expo 2005: Power of Land, Sea, and Air. 2005. doi: 10.1115/gt2005-68189
    [11]
    AZAD G S, HAN J C, TENG S Y, et al. Heat transfer and pressure distributions on a gas turbine blade tip[C]//Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air. 2000. doi: 10.1115/2000-GT-0194
    [12]
    李成勤. 低速轴流压气机平面叶栅叶顶泄漏流动的研究[D]. 北京: 中国科学院研究生院, 2011.

    LI C Q. Investigation of tip leakage flow in low-speed axial compressor cascade[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2011.
    [13]
    KEGALJ M, SCHMID G, WARTZEK F, et al. Experimental and numerical investigation of tip leakage flow in a 11/2 stage turbine rig comparing flat and cavity-squealer tip geometries[C]//Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. 2012. doi: 10.1115/GT2012-69568
    [14]
    YAMAMOTO A. Endwall flow/loss mechanisms in a linear turbine cascade with blade tip clearance[J]. Journal of Turbomachinery, 1989, 111(3): 264-275. doi: 10.1115/1.3262265
    [15]
    XIAO X W, MCCARTER A A, LAKSHMINARAYANA B. Tip clearance effects in a turbine rotor: part I-pressure field and loss[C]//Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air. 2000. doi: 10.1115/2000-GT-0476
    [16]
    MCCARTER A A, XIAO X W, LAKSHMINARAYANA B. Tip clearance effects in a turbine rotor: part II-velocity field and flow physics[C]//Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air. 2000. doi: 10.1115/2000-GT-0477
    [17]
    XIAO X W. Investigation of tip clearance flow physics in axial flow turbine rotors[D]. Pennsylvania: Pennsylvania State University, 2001.
    [18]
    SJOLANDER S A, CAO D. Measurements of the flow in an idealized turbine tip gap[J]. Journal of Turbomachinery, 1995, 117(4): 578-584. doi: 10.1115/1.2836571
    [19]
    RAO N M, CAMCI C. Visualization of rotorendwall, tip gap, and outer casing surface flows in a rotating axial turbine rig[C]//Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air. 2005. doi: 10.1115/GT2005-68264
    [20]
    ZENG F, DU J L, HUANG L, et al. An experimental method for squealer tip flow field considering relative casing motion[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1942-1952. doi: 10.1016/j.cja.2020.03.002
    [21]
    赵强. 叶顶喷气对涡轮动叶叶尖流动及换热影响的研究[D]. 北京: 北京航空航天大学, 2019.

    ZHAO Q. Effects of tip injection on aerodynamic performance and heat transfer of turbine rotor tip leakage flow[D]. Beijing: Beihang University, 2019.
    [22]
    于贤君. 亚音轴流压气机端壁区复杂流动研究及其模化分析[D]. 北京: 北京航空航天大学, 2009.

    YU X J. Experimental investigations and approximate analyses for the three-dimensional flow fields in the endwallregion in a subsonic axial compressor stage[D]. Beijing: Beihang University, 2009.
    [23]
    WIENEKE B. PIV uncertainty quantification from correlation statistics[J]. Measurement Science and Technology, 2015, 26(7): 074002. doi: 10.1088/0957-0233/26/7/074002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(43)  / Tables(2)

    Article Metrics

    Article views (262) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return