Volume 35 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
CAO Gang, HUANG Suhe, LI Mingsheng, et al. Advances in research on directional movement of droplets on wetted anisotropic surfaces[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 67-85. doi: 10.11729/syltlx20200086
Citation: CAO Gang, HUANG Suhe, LI Mingsheng, et al. Advances in research on directional movement of droplets on wetted anisotropic surfaces[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 67-85. doi: 10.11729/syltlx20200086

Advances in research on directional movement of droplets on wetted anisotropic surfaces

doi: 10.11729/syltlx20200086
  • Received Date: 2020-07-18
  • Rev Recd Date: 2020-08-15
  • Publish Date: 2021-02-25
  • Research of the droplet movement on the wetting of the heterogeneous surface has important application value in, for example, oil-water separation, water collection, etc., and has become a research hotspot in the field of surface interface. In addition, the research on the directional motion of the the droplets on wetting anisotropic surface is of great significance for understanding the solid-liquid interaction and developing a high-performance wetting anisotropic surface. This paper introduces the directional movement of droplets on the wetting anisotropic surface in detail including the wedge-shaped surface, groove surface, hydrophilic-hydrophobic surface, asymmetric topography surface and biological surface. The typical cases of directional movement of droplets on a wetting anisotropic surface at home and abroad are shown. Finally, a summary and prospect are provided for future research.
  • loading
  • [1]
    YOUNG T. Ⅲ. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. doi: 10.1098/rstl.1805.0005
    [2]
    WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. doi: 10.1021/ie50320a024
    [3]
    CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. doi: 10.1039/tf9444000546
    [4]
    FURMIDGE C G L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention[J]. Journal of Colloid Science, 1962, 17(4): 309-324. doi: 10.1016/0095-8522(62)90011-9
    [5]
    WU H P, ZHU K, CAO B B, et al. Smart design of wettability-patterned gradients on substrate-independent coated surfaces to control unidirectional spreading of droplets[J]. Soft Matter, 2017, 13(16): 2995-3002. doi: 10.1039/c6sm02864k
    [6]
    BLIZNYUK O, JANSEN H P, KOOIJ E S, et al. Smart design of stripe-patterned gradient surfaces to control droplet motion[J]. Langmuir, 2011, 27(17): 11238-11245. doi: 10.1021/la201671w
    [7]
    SUN Q Q, WANG D H, LI Y N, et al. Surface charge printing for programmed droplet transport[J]. Nature Materials, 2019, 18(9): 936-941. doi: 10.1038/s41563-019-0440-2
    [8]
    ZHENG Y M, BAI H, HUANG Z B, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. doi: 10.1038/nature08729
    [9]
    JU J, BAI H, ZHENG Y M, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3: 1247. doi: 10.1038/ncomms2253
    [10]
    XU C, FENG R, SONG F, et al. Continuous and controlled directional water transportation on a hydrophobic/superhydro-phobic patterned surface[J]. Chemical Engineering Journal, 2018, 352: 722-729. doi: 10.1016/j.cej.2018.07.073
    [11]
    CHEN T C, LIU H T, TENG S H, et al. Water transport control on a patterned superhydrophobic surface via laser direct writing[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2016, 34(6): 061103. doi: 10.1116/1.4966617
    [12]
    RAY A, VARMA V B, WANG Z M, et al. Magnetic droplet merging by hybrid magnetic fields[J]. IEEE Magnetics Letters, 2016, 7: 1-5. doi: 10.1109/lmag.2016.2613065
    [13]
    LIU H, ZHENG S, YANG X, et al. Magnetic actuation multifunctional platform combining microdroplets delivery and stirring[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 47642-47648. doi: 10.1021/acsami.9b18957
    [14]
    AN S, ZHU M Y, GU K, et al. Light-driven motion of water droplets with directional control on nanostructured surfaces[J]. Nanoscale, 2020, 12(7): 4295-4301. doi: 10.1039/c9nr09575f
    [15]
    XIAO Y, ZARGHAMI S, WAGNER K, et al. Moving droplets in 3D using light[J]. Advanced Materials, 2018, 30(35): 1801821. doi: 10.1002/adma.201801821
    [16]
    CHEN D L, LI J, ZHAO J Y, et al. Bioinspired superhydrophilic-hydrophobic integrated surface with conical pattern-shape for self-driven fog collection[J]. Journal of Colloid and Interface Science, 2018, 530: 274-281. doi: 10.1016/j.jcis.2018.06.081
    [17]
    ZHANG J C, CHEN F Z, LU Y, et al. Superhydrophilic-superhydrophobic patterned surfaces on glass substrate for water harvesting[J]. Journal of Materials Science, 2020, 55(2): 498-508. doi: 10.1007/s10853-019-04046-x
    [18]
    JU J, XIAO K, YAO X, et al. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection[J]. Advanced Materials, 2013, 25(41): 5937-5942. doi: 10.1002/adma.201301876
    [19]
    WANG B, GUO Z G. Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing[J]. Applied Physics Letters, 2013, 103(6): 063704. doi: 10.1063/1.4817922
    [20]
    LI K, JU J, XUE Z X, et al. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water[J]. Nature Communications, 2013, 4: 2276. doi: 10.1038/ncomms3276
    [21]
    LI C X, WU L, YU C L, et al. Peristome-mimetic curved surface for spontaneous and directional separation of micro water-in-oil drops[J]. Angewandte Chemie (International Edition), 2017, 56(44): 13623-13628. doi: 10.1002/anie.201706665
    [22]
    LIU Y H, ANDREW M, LI J, et al. Symmetry breaking in drop bouncing on curved surfaces[J]. Nature Communications, 2015, 6: 10034. doi: 10.1038/ncomms10034
    [23]
    HAO C L, LI J, LIU Y, et al. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces[J]. Nature Communications, 2015, 6: 7986. doi: 10.1038/ncomms8986
    [24]
    LI H Z, FANG W, LI Y N, et al. Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces[J]. Nature Communications, 2019, 10: 950. doi: 10.1038/s41467-019-08919-2
    [25]
    JIAO K, LI X G. Water transport in polymer electrolyte membrane fuel cells[J]. Progress in Energy and Combustion Science, 2011, 37(3): 221-291. doi: 10.1016/j.pecs.2010.06.002
    [26]
    FU R S, PRESTON J S, PASAOGULLARI U, et al. Water transport across a polymer electrolyte membrane under thermal gradients[J]. Journal of the Electrochemical Society, 2011, 158(3): B303. doi: 10.1149/1.3530794
    [27]
    BAI F, WU J T, GONG G M, et al. Biomimetic "cactus spine" with hierarchical groove structure for efficient fog collection[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2015, 2(7): 1500047. doi: 10.1002/advs.201500047
    [28]
    TIAN Y, ZHU P G, TANG X, et al. Large-scale water collection of bioinspired cavity-microfibers[J]. Nature Commu-nications, 2017, 8(1): 1080. doi: 10.1038/s41467-017-01157-4
    [29]
    LI J, ZHOU Y L, WANG W B, et al. A bio-inspired superhydrophobic surface for fog collection and directional water transport[J]. Journal of Alloys and Compounds, 2020, 819: 152968. doi: 10.1016/j.jallcom.2019.152968
    [30]
    XU B, CHEN Z Q. Condensation on composite V-shaped surface with different gravity in nanoscale[J]. Microgravity Science and Technology, 2019, 31(5): 603-613. doi: 10.1007/s12217-019-09731-9
    [31]
    LUO H, LU Y, YIN S H, et al. Robust platform for water harvesting and directional transport[J]. Journal of Materials Chemistry A, 2018, 6(14): 5635-5643. doi: 10.1039/c8ta01096j
    [32]
    YOU I S, KANG S M, LEE S H, et al. Polydopamine microfluidic system toward a two-dimensional, gravity-driven mixing device[J]. Angewandte Chemie (International Edition), 2012, 51(25): 6126-6130. doi: 10.1002/anie.201200329
    [33]
    ZHANG J L, HAN Y C. Shape-gradient composite surfaces: water droplets move uphill[J]. Langmuir, 2007, 23(11): 6136-6141. doi: 10.1021/la063376k
    [34]
    SONG D, BHUSHAN B. Water condensation and transport on bioinspired triangular patterns with heterogeneous wettability at a low temperature[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2138): 20180335. doi: 10.1098/rsta.2018.0335
    [35]
    SONG D, BHUSHAN B. Optimization of bioinspired triangular patterns for water condensation and transport[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2150): 20190127. doi: 10.1098/rsta.2019.0127
    [36]
    SONG D, BHUSHAN B. Bioinspired triangular patterns forwater collection from fog[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2150): 20190128. doi: 10.1098/rsta.2019.0128
    [37]
    DENG S Y, SHANG W F, FENG S L, et al. Controlled droplet transport to target on a high adhesion surface with multi-gradients[J]. Scientific Reports, 2017, 7: 45687. doi: 10.1038/srep45687
    [38]
    ZHENG Y F, CHENG J, ZHOU C L, et al. Droplet motion on a shape gradient surface[J]. Langmuir, 2017, 33(17): 4172-4177. doi: 10.1021/acs.langmuir.7b00227
    [39]
    XU B, CHEN Z Q. Droplet movement on a composite wedge-shaped surface with multi-gradients and different gravitational field by molecular dynamics[J]. Microgravity Science and Technology, 2018, 30(4): 571-579. doi: 10.1007/s12217-018-9641-6
    [40]
    WANG S, WANG C, PENG Z L, et al. Moving Behavior of Nanodroplets on Wedge-Shaped Functional Surfaces[J]. The Journal of Physical Chemistry C, 2019, 123(3): 1798-1805. doi: 10.1021/acs.jpcc.8b09831
    [41]
    PAPADOPOULOU E, MEGARIDIS C M, WALTHER J H, et al. Ultrafast propulsion of water nanodroplets on patterned graphene[J]. ACS Nano, 2019, 13(5): 5465-5472. doi: 10.1021/acsnano.9b00252
    [42]
    XU B, CHEN Z Q. Molecular dynamics study of water vapor condensation on a composite wedge-shaped surface with multi wettability gradients[J]. International Communications in Heat and Mass Transfer, 2019, 105: 65-72. doi: 10.1016/j.icheatmasstransfer.2019.03.011
    [43]
    WANG X, XU B, CHEN Z. Numerical simulation of droplet dynamics on chemically heterogeneous surfaces by lattice Boltzmann method[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019, 30(2): 607-624. doi: 10.1108/hff-03-2019-0259
    [44]
    LIU M, YAO Y, YANG Y Z, et al. Directional transport behavior of droplets on wedge-shaped functional surfaces[J]. The Journal of Physical Chemistry C, 2019, 123(20): 12736-12743. doi: 10.1021/acs.jpcc.9b00641
    [45]
    SEN U, CHATTERJEE S, GANGULY R, et al. Scaling laws in directional spreading of droplets on wettability-confined diverging tracks[J]. Langmuir, 2018, 34(5): 1899-1907. doi: 10.1021/acs.langmuir.7b03896
    [46]
    XU D, BA Y, SUN J J, et al. A numerical study of micro-droplet spreading behaviors on wettability-confined tracks using a three-dimensional phase-field lattice boltzmann model[J]. Langmuir, 2020, 36(1): 340-353. doi: 10.1021/acs.langmuir.9b02731
    [47]
    LIU Z A, ZHANG H, HAN Y Q, et al. Superaerophilic wedge-shaped channels with precovered air film for efficient subaqueous bubbles/jet transportation and continuous oxygen supplementation[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23808-23814. doi: 10.1021/acsami.9b08085
    [48]
    SONG J L, LIU Z A, WANG X Y, et al. High-efficiency bubble transportation in an aqueous environment on a serial wedge-shaped wettability pattern[J]. Journal of Materials Chemistry A, 2019, 7(22): 13567-13576. doi: 10.1039/c9ta02095k
    [49]
    CHEN Y, HE B, LEE J, et al. Anisotropy in the wetting of rough surfaces[J]. Journal of Colloid and Interface Science, 2005, 281(2): 458-464. doi: 10.1016/j.jcis.2004.07.038
    [50]
    SOMMERS A D, JACOBI A M. Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface[J]. Journal of Micromechanics and Microengineering, 2006, 16(8): 1571-1578. doi: 10.1088/0960-1317/16/8/018
    [51]
    LI W, FANG G P, LI Y F, et al. Anisotropic wetting behavior arising from superhydrophobic surfaces: parallel grooved structure[J]. The Journal of Physical Chemistry B, 2008, 112(24): 7234-7243. doi: 10.1021/jp712019y
    [52]
    SOMMERS A D, JACOBI A M. Wetting phenomena on micro-grooved aluminum surfaces and modeling of the critical droplet size[J]. Journal of Colloid and Interface Science, 2008, 328(2): 402-411. doi: 10.1016/j.jcis.2008.09.023
    [53]
    HE L, SUN Y Y, SUI X, et al. Modeling and measurement on the sliding behavior of microgrooved surfaces[J]. Langmuir, 2019, 35(43): 14133-14140. doi: 10.1021/acs.langmuir.9b02418
    [54]
    WANG X, WANG Z B, HENG L P, et al. Stable omniphobic anisotropic covalently grafted slippery surfaces for directional transportation of drops and bubbles[J]. Advanced Functional Materials, 2020, 30(1): 1902686. doi: 10.1002/adfm.201902686
    [55]
    KUMAR M, BHARDWAJ R, SAHU K C. Motion of adroplet on an anisotropic microgrooved surface[J]. Langmuir, 2019, 35(8): 2957-2965. doi: 10.1021/acs.langmuir.8b03604
    [56]
    YANG X L, LIU X, LU Y, et al. Controllable water adhesion and anisotropic sliding on patterned superhydro-phobic surface for droplet manipulation[J]. The Journal of Physical Chemistry C: Nanomaterials and Interfaces, 2016, 120(13): 7233-7240. doi: 10.1021/acs.jpcc.6b02067
    [57]
    TAHER M A, PRASAD H, NAVANITH KRISHNAN P K, et al. Ellipsoidal droplet formation on anisotropic superhydro-phobic copper surface[J]. Surface Topography: Metrology and Properties, 2019, 7(3): 035001. doi: 10.1088/2051-672x/ab2d80
    [58]
    KWON D, LEE S, YEOM E. Experimental investigation on water repellency and anisotropic wettability of microgrooved polymer surfaces[J]. Experiments in Fluids, 2019, 60(11): 169. doi: 10.1007/s00348-019-2805-3
    [59]
    LIAN Z X, XU J K, YU Z J, et al. A simple two-step approach for the fabrication of bio-inspired superhydrophobic and anisotropic wetting surfaces having corrosion resistance[J]. Journal of Alloys and Compounds, 2019, 793: 326-335. doi: 10.1016/j.jallcom.2019.04.169
    [60]
    ZHANG P C, LIU H L, MENG J X, et al. Grooved organogel surfaces towards anisotropic sliding of water droplets[J]. Advanced Materials, 2014, 26(19): 3131-3135. doi: 10.1002/adma.201305914
    [61]
    DING Y, JIA L, PENG Q, et al. Critical sliding angle of water droplet on parallel hydrophobic grooved surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124083. doi: 10.1016/j.colsurfa.2019.124083
    [62]
    CHU K H, XIAO R, WANG E N. Uni-directional liquid spreading on asymmetric nanostructured surfaces[J]. Nature Materials, 2010, 9(5): 413-417. doi: 10.1038/nmat2726
    [63]
    BORMASHENKO E, MUSIN A, WHYMAN G, et al. Wetting transitions and depinning of the triple line[J]. Langmuir, 2012, 28(7): 3460-3464. doi: 10.1021/la204424n
    [64]
    乔小溪, 张向军, 陈平, 等. 微矩形凹槽表面液滴各向异性浸润行为的研究[J]. 物理学报, 2020, 69(3): 205-211.

    QIAO X X, ZHANG X J, CHEN P, et al. Influences of micro-groove size on surface anisotropic wetting behaviors[J]. Acta Physica Sinica, 2020, 69(3): 205-211.
    [65]
    SOMMERS A D, BREST T J, EID K F. Topography-based surface tension gradients to facilitate water droplet movement on laser-etched copper substrates[J]. Langmuir, 2013, 29(38): 12043-12050. doi: 10.1021/la402424d
    [66]
    ZHENG H X, HUANG S, LIU J Y, et al. One-step modification method to fabricate wettability patterns on aluminium substrate[J]. Micro & Nano Letters, 2016, 11(11): 697-701. doi: 10.1049/mnl.2016.0187
    [67]
    YAGHOUBI H, FOROUTAN M. Wettability of striped patterned mono-and multilayer graphene supported on platinum[J]. Applied Surface Science, 2020, 500: 144002. doi: 10.1016/j.apsusc.2019.144002
    [68]
    LV C, YANG C W, HAO P F, et al. Sliding of water droplets on microstructured hydrophobic surfaces[J]. Langmuir, 2010, 26(11): 8704-8708. doi: 10.1021/la9044495
    [69]
    MORITA M, KOGA T, OTSUKA H, et al. Macroscopic-wetting anisotropy on the line-patterned surface of fluoroalkylsilane monolayers[J]. Langmuir, 2005, 21(3): 911-918. doi: 10.1021/la0485172
    [70]
    DRELICH J, WILBUR J L, MILLER J D, et al. Contact angles for liquid drops at a model heterogeneous surface consisting of alternating and parallel hydrophobic/hydrophilic strips[J]. Langmuir, 1996, 12(7): 1913-1922. doi: 10.1021/la9509763
    [71]
    SUZUKI S, NAKAJIMA A, TANAKA K, et al. Sliding behavior of water droplets on line-patterned hydrophobic surfaces[J]. Applied Surface Science, 2008, 254(6): 1797-1805. doi: 10.1016/j.apsusc.2007.07.171
    [72]
    NAKAJIMA A, NAKAGAWA Y, FURUTA T, et al. Sliding of water droplets on smooth hydrophobic silane coatings with regular triangle hydrophilic regions[J]. Langmuir, 2013, 29(29): 9269-9275. doi: 10.1021/la401517v
    [73]
    HE L, LIANG W Y, WANG Z Q, et al. A three-dimensional model for analyzing the anisotropic wetting behavior of striped surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 552: 67-74. doi: 10.1016/j.colsurfa.2018.05.008
    [74]
    SBRAGAGLIA M, BIFERALE L, AMATI G, et al. Slidingdrops across alternating hydrophobic and hydrophilic stripes[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2014, 89: 012406. doi: 10.1103/physreve.89.012406
    [75]
    ZHENG H X, HUANG S, LIU J Y, et al. Wettability-gradient surface fabricated by combining electrochemical etching and lithography[J]. Journal of Dispersion Science and Technology, 2017, 38(7): 979-984. doi: 10.1080/01932691.2016.1216441
    [76]
    YU C M, ZHU X B, LI K, et al. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface[J]. Advanced Functional Materials, 2017, 27(29): 1701605. doi: 10.1002/adfm.201701605
    [77]
    SEO J, LEE S, LEE J, et al. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4722-4729. doi: 10.1021/am2011756
    [78]
    YANG D, KRASOWSKA M, PRIEST C, et al. Dynamics of capillary-driven flow in open microchannels[J]. The Journal of Physical Chemistry C, 2011, 115(38): 18761-18769. doi: 10.1021/jp2065826
    [79]
    XU Q F, WANG J N, SMITH I H, et al. Directing the transportation of a water droplet on a patterned super hydrophobic surface[J]. Applied Physics Letters, 2008, 93(23): 233112. doi: 10.1063/1.3039874
    [80]
    ZHANG H, LIU Y, HUA M, et al. A laser scanning method to control the location, shape, contact angle and sliding of water droplet on superhydrophobic surface[J]. Advanced Engineering Materials, 2019, 21(7): 1801375. doi: 10.1002/adem.201801375
    [81]
    YANG X L, SONG J L, ZHENG H X, et al. Anisotropic sliding on dual-rail hydrophilic tracks[J]. Lab on a Chip, 2017, 17(6): 1041-1050. doi: 10.1039/c7lc00028f
    [82]
    ZHU S W, BIAN Y C, WU T, et al. Spontaneous and unidirectional transportation of underwater bubbles on superhydrophobic dual rails[J]. Applied Physics Letters, 2020, 116(9): 093706. doi: 10.1063/1.5144593
    [83]
    HU H B, YU S X, SONG D. No-loss transportation of water droplets by patterning a desired hydrophobic path on a superhydrophobic surface[J]. Langmuir, 2016, 32(29): 7339-7345. doi: 10.1021/acs.langmuir.6b01654
    [84]
    HUANG L, WANG X Y, ZHAO C L, et al. Reversible lossless manipulation of water droplets with large-range volume[J]. Micro & Nano Letters, 2018, 13(7): 896-901. doi: 10.1049/mnl.2017.0789
    [85]
    HUANG S L, LI J, LIU L, et al. Lossless fast drop self-transport on anisotropic omniphobic surfaces: origin and elimination of microscopic liquid residue[J]. Advanced Materials, 2019, 31(27): 1901417. doi: 10.1002/adma.201901417
    [86]
    SANDRE O, GORRE-TALINI L, AJDARI A, et al. Moving droplets on asymmetrically structured surfaces[J]. Physical Review E: Covering Statistical, Nonlinear, Biological, and Soft Matter Physics, 1999, 60(3): 2964. doi: 10.1103/physreve.60.2964
    [87]
    BUGUIN A, TALINI L, SILBERZAN P.Ratchet-like topological structures for the control of microdrops[J]. Applied Physics A: Materials Science & Processing, 2002, 75(2): 207-212. doi: 10.1007/s003390201322
    [88]
    DUNCOMBE T A, PARSONS J F, BÖHRINGER K F. Directed drop transport rectified from orthogonal vibrations via a flat wetting barrier ratchet[J]. Langmuir, 2012, 28(38): 13765-13770. doi: 10.1021/la3024309
    [89]
    GENG X R, YU X P, BAO L Y, et al. Directed transport of liquid droplets on vibrating substrates with asymmetric corrugations and patterned wettability: a dissipative particle dynamics study[J]. Molecular Simulation, 2020, 46(1): 33-40. doi: 10.1080/08927022.2019.1667498
    [90]
    SEKEROGLU K, GURKAN U A, DEMIRCI U, et al. Transport of a soft cargo on a nanoscale ratchet[J]. Applied Physics Letters, 2011, 99(6): 63703-637033. doi: 10.1063/1.3625430
    [91]
    SHASTRY A, TAYLOR D, BöHRINGER K F. Micro-structured surface ratchets for droplet transport[C]//TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference. 2007. doi: 10.1109/SENSOR.2007.4300393
    [92]
    SUN D, BÖHRINGER K F. EWOD-aided droplet transport on texture ratchets[J]. Applied Physics Letters, 2020, 116(9): 093702. doi: 10.1063/1.5142571
    [93]
    FENG S L, WANG S J, LIU C C, et al. Controlled droplet transport on a gradient adhesion surface[J]. Chemical Communications, 2015, 51(27): 6010-6013. doi: 10.1039/c5cc00467e
    [94]
    HOLMES H R, GOMEZ A E, BÖHRINGER K F. Timing and Synchronization of Droplets on Racthet Conveyors[C]//Proc of 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). 2016. doi: 10.1109/MEMSYS.2016.7421749
    [95]
    METTU S, CHAUDHURY M K. Motion of drops on a surface induced by thermal gradient and vibration[J]. Langmuir, 2008, 24(19): 10833-10837. doi: 10.1021/la801380s
    [96]
    SHASTRY A, CASE M J, BÖHRINGER K F. Directing droplets using microstructured surfaces[J]. Langmuir, 2006, 22(14): 6161-6167. doi: 10.1021/la0601657
    [97]
    SUN D, GOMEZ G, BÖHRINGER K F. Droplet manipulation using ac ewod-actuated anisotropic ratchet conveyor[C]//Proc of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXⅢ. 2019. doi: 10.1109/TRANSDUCERS.2019.8808468
    [98]
    DANIEL S, CHAUDHURY M K. Rectified motion of liquid drops on gradient surfaces induced by vibration[J]. Langmuir, 2002, 18(9): 3404-3407. doi: 10.1021/la025505c
    [99]
    YEH F W, YANG L J, HESS G Y, et al. The arrowed surface ratchets with hydrophobic parylene for droplet transportation[C]//NEMS'09: Proceedings of the 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Vols 1 and 2. New York: IEEE, 2009: 359-362. doi: 10.1109/NEMS.2009.5068595
    [100]
    DUNCOMBE T A, PARSONS J F, BÖHRINGER K F. Droplet transport on flat chemically heterogeneous surfaces via periodic wetting barriers and vibration[C]//MEMS 2010: 23rd IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest. New York: IEEE, 2010: 1043-1046. doi: 10.1109/MEMSYS.2010.5442388
    [101]
    HAO P F, LV C, ZHANG X W, et al. Driving liquid droplets on microstructured gradient surface by mechanical vibration[J]. Chemical Engineering Science, 2011, 66(10): 2118-2123. doi: 10.1016/j.ces.2011.02.015
    [102]
    QI L, NIU Y, RUCK C, et al. Mechanical-activated digital microfluidics with gradient surface wettability[J]. Lab on a Chip, 2019, 19(2): 223-232. doi: 10.1039/c8lc00976g
    [103]
    CHAMAKOS N T, KARAPETSAS G, PAPATHANASIOU A G. How asymmetric surfaces induce directional droplet motion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511: 180-189. doi: 10.1016/j.colsurfa.2016.09.078
    [104]
    DONG Y, HOLMES H R, BÖHRINGER K F.Converting vertical vibration of anisotropic ratchet conveyors into horizontal droplet motion[J]. Langmuir, 2017, 33(40): 10745-10752. doi: 10.1021/acs.langmuir.7b02504
    [105]
    DANIEL S, CHAUDHURY M K, DE GENNES P G. Vibration-actuated drop motion on surfaces for batch microfluidic processes[J]. Langmuir, 2005, 21(9): 4240-4248. doi: 10.1021/la046886s
    [106]
    COSTALONGA M, BRUNET P. Directional motion of vibrated sessile drops: a quantitative study[J]. Physical Review Fluids, 2020, 5(2): 023601. doi: 10.1103/physrevfluids.5.023601
    [107]
    HOLMES H R, BÖHRINGER K F. Transport velocity of droplets on ratchet conveyors[J]. Advances in Colloid and Interface Science, 2018, 255: 18-25. doi: 10.1016/j.cis.2017.08.009
    [108]
    HOLMES H R, GOMEZ A, BÖHRINGER K. Enabling droplet functionality on anisotropic ratchet conveyors[J]. Micromachines, 2017, 8(12): 363. doi: 10.3390/mi8120363
    [109]
    DUNCOMBE T A, ERDEM E Y, SHASTRY A, et al. Controlling liquid drops with texture ratchets[J]. Advanced Materials, 2012, 24(12): 1545-1550. doi: 10.1002/adma.201104446
    [110]
    NOBLIN X, KOFMAN R, CELESTINI F. Ratchetlike motion of a Shaken drop[J]. Physical Review Letters, 2009, 102(19): 194504. doi: 10.1103/physrevlett.102.194504
    [111]
    BORCIA R, BORCIA I D, BESTEHORN M. Can vibrations control drop motion?[J]. Langmuir, 2014, 30(47): 14113-14117. doi: 10.1021/la503415r
    [112]
    SAVVA N, KALLIADASIS S. Low-frequency vibrations of two-dimensional droplets on heterogeneous substrates[J]. Journal of Fluid Mechanics, 2014, 754: 515-549. doi: 10.1017/jfm.2014.409
    [113]
    KAVOUSANAKIS M E, CHAMAKOS N T, PAPATHANASIOU A G. Connection of intrinsic wettability and surface topography with the apparent wetting behavior and adhesion properties[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15056-15066. doi: 10.1021/acs.jpcc.5b00718
    [114]
    MOROZOV M, MANOR O. Vibration-driven mass transfer and dynamic wetting[J]. Current Opinion in Colloid & Interface Science, 2018, 36: 37-45. doi: 10.1016/j.cocis.2017.12.002
    [115]
    胡海豹, 曹刚, 张梦卓, 等. 固体表面液滴定向运动行为研究进展[J]. 材料导报, 2020, 34(13): 13175-13193. doi: 10.11896/cldb.19070008

    HU H B, CAO G, ZHANG M Z, et al. Research advance on directional motion behavior of solid surface droplets[J]. Materials Reports, 2020, 34(13): 13175-13193. doi: 10.11896/cldb.19070008
    [116]
    WAN Y L, CUI P, XU J K, et al. Directional water-collecting behavior of pine needle surface[J]. Materials Letters, 2019, 255: 126561. doi: 10.1016/j.matlet.2019.126561
    [117]
    CHEN H W, ZHANG P F, ZHANG L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7597): 85. doi: 10.1038/nature17189
    [118]
    LI C X, DAI H Y, GAO C, et al. Bioinspired inner microstructured tube controlled capillary rise[J]. Proceedings of the National Academy of Sciences of the United States of America(PNAS), 2019, 116(26): 12704-12709. doi: 10.1073/pnas.1821493116
    [119]
    CHEN H W, RAN T, GAN Y, et al. Ultrafast water harvesting and transport in hierarchical microchannels[J]. Nature Materials, 2018, 17(10): 935-942. doi: 10.1038/s41563-018-0171-9
    [120]
    KIM S W, KIM J, PARK S S, et al. Enhanced water collection of bio-inspired functional surfaces in high-speed flow for high performance demister[J]. Desalination, 2020, 479: 114314. doi: 10.1016/j.desal.2020.114314
    [121]
    PARKER A R, LAWRENCE C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34. doi: 10.1038/35102108
    [122]
    NØRGAARD T, DACKE M. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles[J]. Frontiers in Zoology, 2010, 7: 23. doi: 10.1186/1742-9994-7-23
    [123]
    ZHAI L, BERG M C, CEBECI F Ç, et al. Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib desert beetle[J]. Nano Letters, 2006, 6(6): 1213-1217. doi: 10.1021/nl060644q
    [124]
    GARROD R P, HARRIS L G, SCHOFIELD W C E, et al. Mimicking a stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces[J]. Langmuir, 2007, 23(2): 689-693. doi: 10.1021/la0610856
    [125]
    DORRER C, RVHE J. Mimicking the stenocarabeetle-dewetting of drops from a patterned superhydrophobic surface[J]. Langmuir, 2008, 24(12): 6154-6158. doi: 10.1021/la800226e
    [126]
    PARK K C, KIM P, GRINTHAL A, et al. Condensation on slippery asymmetric bumps[J]. Nature, 2016, 531(7592): 78-82. doi: 10.1038/nature16956
    [127]
    PRAKASH M, QUERE D, BUSH J W M. Surface tension transport of prey by feeding shorebirds: the capillary ratchet[J]. Science, 2008, 320(5878): 931-934. doi: 10.1126/science.1156023
    [128]
    BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. doi: 10.1007/s004250050096
    [129]
    FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. doi: 10.1002/adma.200290020
    [130]
    FENG L, ZHANG Y N, XI J M, et al. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24(8): 4114-4119. doi: 10.1021/la703821h
    [131]
    GUO Z G, LIU W M. Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure[J]. Plant Science, 2007, 172(6): 1103-1112. doi: 10.1016/j.plantsci.2007.03.005
    [132]
    IVANOVA E P, HASAN J, WEBB H K, et al. Natural bactericidal surfaces: mechanical rupture of pseudomonas aeruginosa cells by cicada wings[J]. Small, 2012, 8(16): 2489-2494. doi: 10.1002/smll.201200528
    [133]
    LI X P, MANZ A. Duplex-imprinted nano well arrays for promising nanoparticle assembly[J]. Nanotechnology, 2018, 29(8): 085302. doi: 10.1088/1361-6528/aaa236
    [134]
    BARTHLOTT W, SCHIMMEL T, WIERSCH S, et al. The salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water[J]. Advanced Materials, 2010, 22(21): 2325-2328. doi: 10.1002/adma.200904411
    [135]
    ZHENG D Y, JIANG Y H, YU W T, et al. Salvinia-effect-inspired "sticky" superhydrophobic surfaces by meniscus-confined electrodeposition[J]. Langmuir, 2017, 33(47): 13640-13648. doi: 10.1021/acs.langmuir.7b03014
    [136]
    ZHOU K, LI D M, XUE P H, et al. One-step fabrication of Salvinia-inspired superhydrophobic surfaces with high adhesion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590: 124517. doi: 10.1016/j.colsurfa.2020.124517
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views (851) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return