Volume 35 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
WU Taofeng, LUAN Yinsen, SHI Shengxian. Simulation and analysis of simultaneous 3D velocity and temperature measurement technique based on light field imaging technology[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 75-82. doi: 10.11729/syltlx20200092
Citation: WU Taofeng, LUAN Yinsen, SHI Shengxian. Simulation and analysis of simultaneous 3D velocity and temperature measurement technique based on light field imaging technology[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 75-82. doi: 10.11729/syltlx20200092

Simulation and analysis of simultaneous 3D velocity and temperature measurement technique based on light field imaging technology

doi: 10.11729/syltlx20200092
  • Received Date: 2020-08-19
  • Rev Recd Date: 2020-09-09
  • Publish Date: 2021-04-01
  • A technique that can simultaneously measure three-dimensional velocity and temperature is proposed. The technique is based on LF-PIV(Single-camera Light-Filed Particle Image Velocimetry), and the temperature measurement technology making use of the lifetime of temperature-sensitive phosphorescent particles. The correspondence between the lifetime and temperature of the particle(Mg3F2GeO4: Mn)was experimentally calibrated, and synthetic light-field particle image simulation was performed to study the effect of camera exposure time characteristics on measurement accuracy. Under the condition that the exposure time of the two frames of camera is controllable, the water jet data obtained by DNS (Direct Numerical Simulation) are used for digital synthetic image simulation (the jet temperature and ambient temperature are 343.15 K uniformly). The three-dimensional particle image was reconstructed, temperature and velocity fields were calculated, and measurement errors were analyzed. In addition, a theoretical analysis and simulation study of the measurable velocity range was carried out under the existing light field camera hardware parameters. Simulation results show that, under the condition of controllable exposure time of two frames of camera, the new technique can simultaneously measure the three-dimensional velocity and temperature; however, the measur-able velocity is limited by existing light field camera hardware parameters.
  • loading
  • [1]
    OMRANE A, PETERSSON P, ALDÉN M, et al. Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors[J]. Applied Physics B, 2008, 92(1): 99-102. doi: 10.1007/s00340-008-3051-1
    [2]
    FOND B, ABRAM C, HEYES A L, et al. Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles[J]. Optics Express, 2012, 20(20): 22118-22133. doi: 10.1364/OE.20.022118
    [3]
    GEYER D, KEMPF A, DREIZLER A, et al. Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES[J]. Combustion and Flame, 2005, 143(4): 524-548. doi: 10.1016/j.combustflame.2005.08.032
    [4]
    ADRIAN R J. Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetryvs particle image velocimetry[J]. Applied Optics, 1984, 23(11): 1690-1691. doi: 10.1364/AO.23.001690
    [5]
    ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41(6): 933-947. doi: 10.1007/s00348-006-0212-z
    [6]
    丁俊飞, 许晟明, 施圣贤. 光场单相机三维流场测试技术[J]. 实验流体力学, 2016, 30(6): 50-58. doi: 10.11729/syltlx20160141

    DING J F, XU S M, SHI S X. Light field volumetric particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 50-58. doi: 10.11729/syltlx20160141
    [7]
    SHI S X, WANG J H, DING J F, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement and Instrumentation, 2016, 49: 70-88. doi: 10.1016/j.flowmeasinst.2016.05.006
    [8]
    SHI S X, DING J F, NEW T H, et al. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique[J]. Experiments in Fluids, 2017, 58(7): 1-16. doi: 10.1007/s00348-017-2365-3
    [9]
    FAHRINGER T W, LYNCH K P, THUROW B S. Volumetric particle image velocimetry with a singleplenoptic camera[J]. Measurement Science and Technology, 2015, 26(11): 115201. doi: 10.1088/0957-0233/26/11/115201
    [10]
    ABOU NADA F, RICHTER M, KNAPPE C, et al. On the automation of thermographic phosphor calibration[C]//Proceedings of the 60th International Instrumentation Symposium. 2014. doi: 10.1049/cp.2014.0548
    [11]
    NEUBERT P. Device for indicating the temperature distribution of hot bodies: USA, 2071471[P]. 1937-02-23.
    [12]
    YI S J, KIM K C. Phosphorescence-basedmultiphysics visuali-zation: a review[J]. Journal of Visualization, 2014, 17(4): 253-273. doi: 10.1007/s12650-014-0215-4
    [13]
    OMRANE A, OSSLER F, ALDÉN M. Temperature measurements of combustible and non-combustible surfaces using laser induced phosphorescence[J]. Experimental Thermal and Fluid Science, 2004, 28(7): 669-676. doi: 10.1016/j.expthermflusci.2003.12.003
    [14]
    FUHRMANN N, BRVBACH J, DREIZLER A. Phosphor thermometry: a comparison of the luminescence lifetime and the intensity ratio approach[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3611-3618. doi: 10.1016/j.proci.2012.06.084
    [15]
    YI S J, KIM H D, KIM K C. Decay-slope method for 2-dimensional temperature field measurement usingthermographic phosphors[J]. Experimental Thermal and Fluid Science, 2014, 59: 1-8. doi: 10.1016/j.expthermflusci.2014.07.007
    [16]
    ZHOU Q, ERKAN N, OKAMOTO K. Simultaneous measurement of temperature and flow distributions inside pendant water droplets evaporating in an upward air stream using temperature-sensitive particles[J]. Nuclear Engineering and Design, 2019, 345: 157-165. doi: 10.1016/j.nucengdes.2019.02.019
    [17]
    SCHIEPEL D, SCHMELING D, WAGNER C. Simultaneous velocity and temperature measurements in turbulent Rayleigh-Bénard convection based on combined Tomo-PIV and PIT[C]//Proc of the 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics. 2016.
    [18]
    梅迪, 丁俊飞, 施圣贤. 基于双光场相机的高分辨率光场三维PIV技术[J]. 实验流体力学, 2019, 33(2): 57-65. doi: 10.11729/syltlx20180165

    MEI D, DING J F, SHI S X. High resolution volumetric light field particle image velocimetry with dualplenoptic cameras[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 57-65. doi: 10.11729/syltlx20180165
    [19]
    RAFFEL M, WILLERT C E, SCARANO F, et al. Particle image velocimetry-A practical guide[M]. 2nd ed. New York: Springer, 2007.
    [20]
    王晟, 胡志云, 邵珺, 等. 双色热敏磷光涂层测温技术[J]. 红外与激光工程, 2014, 43(5): 1406-1410. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201405010.htm

    WANG S, HU Z Y, SHAO J, et al. Two-color thermally sensitive phosphor coatings for temperature measurement[J]. Infrared and Laser Engineering, 2014, 43(5): 1406-1410. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201405010.htm
    [21]
    KHALID A H, KONTIS K. Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications[J]. Sensors (Basel, Switzerland), 2008, 8(9): 5673-5744. doi: 10.3390/s8095673
    [22]
    SOMEYA S, YOSHIDA S, LI Y R, et al. Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles[J]. Measurement Science and Technology, 2009, 20(2): 025403. doi: 10.1088/0957-0233/20/2/025403
    [23]
    ABOU NADA F, KNAPPE C, XU X, et al. Development of an automatic routine for calibration ofthermographic phosphors[J]. Measurement Science and Technology, 2014, 25(2): 025201. doi: 10.1088/0957-0233/25/2/025201
    [24]
    ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41(6): 933-947. doi: 10.1007/s00348-006-0212-z
    [25]
    FAHRINGER T W, LYNCH K P, THUROW B S. Volumetric particle image velocimetry with single plenoptic camera[J]. Measurement Science and Technology, 2015, 26(11): 115201. doi: 10.1088/0957-0233/26/11/115201
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (407) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return