Volume 35 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
LING Daijun, DAI Qiulin, ZHU Rongchuan, et al. Review of the cascade experimental technology[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 30-38. doi: 10.11729/syltlx20200102
Citation: LING Daijun, DAI Qiulin, ZHU Rongchuan, et al. Review of the cascade experimental technology[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 30-38. doi: 10.11729/syltlx20200102

Review of the cascade experimental technology

doi: 10.11729/syltlx20200102
  • Received Date: 2020-08-02
  • Rev Recd Date: 2020-12-15
  • Publish Date: 2021-06-25
  • Profile design is the basis of modern aero engine and gas turbine aerodynamic and thermodynamic research. As an economic tool, cascade test can be used to explore the profile design method and verify the engineering design in a short time. It plays an important role in the modern compressor and turbine aerodynamic design. The simulation of experimental environment and state is the key of cascade experiment. With the development of the profile design technology and the improvement of cascade performance, profile tests should be expanded and improved to get the variation rules of the profile total performance more accurately and reliably, such as the flow periodicity control, Axial velocity density ratio, 3D effect, low Reynolds number, unsteady flow etc., which would lay the foundation for the research of flow mechanism and flow characteristics that leads to performance change. The history of cascade experimental technology development is introduced in this paper, and the recent research orientations and hotpots are analyzed to provide a reference for relevant studies.
  • loading
  • [1]
    桂幸民, 滕金芳, 刘宝杰, 等. 航空压气机气动热力学理论与应用[M]. 上海: 上海交通大学出版社, 2014: 21-26.

    GUI X M, TENG J F, LIU B J, et al. Compressor aerothermodynamics and its applications in aircraft engines[M]. Shanghai: Shanghai Jiao Tong University Press, 2014: 21-26.
    [2]
    NASA. 轴流压气机气动设计[M]. 秦鹏, 译. 北京: 国防工业出版社, 1975: 10-15.
    [3]
    DUNAVANT J C, EMERY J C, WALCH H C, et al. High-speed cascade tests of the NACA 65- (12 A (sub 10)) 10 and NACA 65- (12 A (sub 2) I (sub 8b)) 10 compressor blade sections[R]. NACA RM L55J08, 1955.
    [4]
    EMERY J C, DUNAVANT J C. Two-dimensional cascade tests of NACA 65- (C (sub zeta) (sub o)) A (sub 10)) 10 blade sections at typical compressor hub conditions for speeds up to choking[R]. NACA RM L57H05, 1957.
    [5]
    LIEBLEIN S. Aerodynamic design of axial-flow compressors. Ⅵ-experimental flow in two-dimensional cascades[R]. NACA RM E55K01a, 1955.
    [6]
    忻建华, 钟芳源. 燃气轮机设计基础[M]. 上海: 上海交通大学出版社, 2015: 212-237.

    XIN J H, ZHONG F Y. Gas turbine design fundament[M]. Shanghai: Shanghai Jiao Tong University Press, 2015: 212-237.
    [7]
    PETER J S. The history of aircraft turbine engine development in the united states: a tradition of excellence[M]. 北京: 航空工业出版社, 2016.
    [8]
    钟兢军, 王会社, 王仲奇. 多级压气机中可控扩散叶型研究的进展与展望第一部分可控扩散叶型的设计与发展[J]. 航空动力学报, 2001, 16(3): 205-211. doi: 10.13224/j.cnki.jasp.2001.03.003

    ZHONG J J, WANG H S, WANG Z Q. Development and prospect of controlled diffusion airfoils for multistage compressor part Ⅰ: design and development of controlled diffusion airfoils[J]. Journal of Aerospace Power, 2001, 16(3): 205-211. doi: 10.13224/j.cnki.jasp.2001.03.003
    [9]
    王会社, 钟兢军, 王仲奇. 多级压气机中可控扩散叶型研究的进展与展望第二部分可控扩散叶型的实验与数值模拟[J]. 航空动力学报, 2002, 17(1): 16-22. doi: 10.13224/j.cnki.jasp.2002.01.002

    WANG H S, ZHONG J J, WANG Z Q. Development of controlled diffusion airfoils for multistage compressor application part 2 test and numerical simulation of controlled diffusion airfoils[J]. Journal of Aerospace Power, 2002, 17(1): 16-22. doi: 10.13224/j.cnki.jasp.2002.01.002
    [10]
    张广. 叶型改型对压气机跨声速叶栅气动性能影响的研究[D]. 沈阳: 沈阳航空工业学院, 2009.

    ZHANG G. Numerical simulation of the aerodynamic performance of the improved compressor blade[D]. Shenyang: Shen-yang Institute of Aeronautical Engineering, 2009.
    [11]
    戈登·C. 奥兹. 航空发动机部件气动热力学[M]. 金东海, 高军辉, 金捷, 等译. 北京: 航空工业出版社, 2016: 164-172.

    OATES G C. Aerothermodynamics of aircraft engine components[M]. Translated by JIN H D, GAO J H, JIN J, et al. Beijing: Aviation Industry Press, 2016: 164-172.
    [12]
    LEPICOVSKY J, MCFARLAND E R, CHIMA R V, et al. On flowfield periodicity in the NASA transonic flutter cascade: part Ⅰ-experimental study[R]. 2000-GT-0572, 2000. doi: 10.1115/2000-GT-0572
    [13]
    SONG B, GUI X M, LI S M, et al. Flow periodicity improvement in a high speed compressor cascade with a large turning-angle[R]. AIAA 2002-3539, 2002. doi: 10.2514/6.2002-3539
    [14]
    STEINERT W, EISENBERG B, STARKEN H. Design and testing of a controlled diffusion airfoil cascade for industrial axial flow compressor application[J]. Journal of Turbomachinery, 1991, 113(4): 583-590. doi: 10.1115/1.2929119
    [15]
    STEINERT W, STARKEN H. Off-design transition and separation behavior of a CDA cascade[J]. Journal of Turbomachinery, 1996, 118(2): 204-210. doi: 10.1115/1.2836627
    [16]
    高丽敏, 蔡明, 刘哲, 等. 附面层抽吸对叶栅风洞流场品质的影响研究[C]//中国工程热物理学会热机气动热力学和流体机械学术会议论文集. 2019.
    [17]
    巩昊, 徐惊雷, 陈宇. 开槽尾流板对跨声速涡轮平面叶栅流场影响的实验[J]. 航空动力学报, 2018, 33(12): 3048-3056. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201812027.htm

    GONG H, XU J L, CHEN Y. Experiment on effects of slotted tailboard on flow field of transonic turbine linear cascade[J]. Journal of Aerospace Power, 2018, 33(12): 3048-3056. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201812027.htm
    [18]
    SONG B, NG W. Influence of axial velocity density ratio in cascade testing of supercritical compressor blades[R]. AIAA 2004-3414, 2004. doi: 10.2514/6.2004-3414
    [19]
    姜正礼. 轴向速度密度比AVDR对压气机叶栅性能影响的试验研究[J]. 燃气涡轮试验与研究, 1995(4): 4-9. https://www.cnki.com.cn/Article/CJFDTOTAL-RQWL199504001.htm

    JIANG Z L. Experimental investigation of AVDR influence on compressor cascade performance[J]. Gas Turbine Experiment and Research, 1995(4): 4-9. https://www.cnki.com.cn/Article/CJFDTOTAL-RQWL199504001.htm
    [20]
    邓熙, 刘波, 马乃行. 高亚声速大弯角轴流压气机平面叶栅损失模型研究[J]. 推进技术, 2015, 36(9): 1302-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201509004.htm

    DENG X, LIU B, MA N X. Investigation of loss model applicable to large range of high subsonic cascades in axial-flow compressor[J]. Journal of Propulsion Technology, 2015, 36(9): 1302-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201509004.htm
    [21]
    TWEEDT D L, SCHREIBER H A, STARKEN H. Experimental investigation of the performance of a supersonic compressor cascade[J]. Journal of Turbomachinery, 1988, 110(4): 456-466. doi: 10.1115/1.3262219
    [22]
    BODE C, KOŽULOVIĆ D, STARK U, et al. Performance and boundary layer development of a high turning compressor cascade at sub- and supercritical flow conditions[C]//Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. 2013. doi: 10.1115/GT2012-68382
    [23]
    HERGT A, MEYER R, LIESNER K, et al. A new approach for compressor endwall contouring[R]. GT2011-45858, 2011.
    [24]
    JOUINI D B M, SJOLANDER S A, MOUSTAPHA S H. Midspan flow-field measurements for two transonic linearturbine cascades at off-design conditions[C]//Proceedings of ASME Turbo Expo 2001: Power for Land, Sea, and Air. 2014. doi: 10.1115/2001-GT-0493
    [25]
    HOLTMAN R L, HUFFMAN G D, MECLURE R B, et al. Test of a supersonic compressor cascade (Vol Ⅰ)[R]. ARL 72-0170, 1972.
    [26]
    邹正平, 王松涛, 刘火星, 等. 航空燃气轮机涡轮气体动力学: 流动机理及气动设计[M]. 上海: 上海交通大学出版社, 2014: 186-188.

    ZOU Z P, WANG S T, LIU H X, et al. Turbine aerodynamics for aero-engine turbine aerodynamics for aero-engine: Flow analysis and aerodynamics design[M]. Shanghai: Shanghai Jiao Tong University Press, 2014: 186-188.
    [27]
    李维, 邹正平. 低雷诺数环境中低压涡轮部件的气动设计探索[J]. 推进技术, 2004, 25(3): 219-223. doi: 10.3321/j.issn:1001-4055.2004.03.007

    LI W, ZOU Z P. Investigation of aerodynamic design of low pressure turbine at low Reynolds number conditions[J]. Journal of Propulsion Technology, 2004, 25(3): 219-223. doi: 10.3321/j.issn:1001-4055.2004.03.007
    [28]
    邹正平, 宁方飞, 刘火星, 等. 雷诺数对涡轮叶栅流动的影响[J]. 工程热物理学报, 2004, 25(2): 216-219. doi: 10.3321/j.issn:0253-231X.2004.02.010

    ZOU Z P, NING F F, LIU H X, et al. Effect of Reynolds number on turbine cascade flow[J]. Journal of Engineering Thermophysics, 2004, 25(2): 216-219. doi: 10.3321/j.issn:0253-231X.2004.02.010
    [29]
    凌代军, 姜正礼, 于进涛, 等. 低雷诺数平面叶栅试验方法研究[J]. 燃气涡轮试验与研究, 2011, 24(3): 1-6. doi: 10.3969/j.issn.1672-2620.2011.03.002

    LING D J, JIANG Z L, YU J T, et al. Experimental investigation methods on low Reynolds number plane cascade[J]. Gas Turbine Experiment and Research, 2011, 24(3): 1-6. doi: 10.3969/j.issn.1672-2620.2011.03.002
    [30]
    伊进宝, 乔渭阳. 低雷诺数下涡轮叶栅流动分离实验与数值模拟[J]. 推进技术, 2008, 29(2): 208-213. doi: 10.3321/j.issn:1001-4055.2008.02.016

    YIJ B, QIAO W Y. Experimental and numerical investigation on flow separation in turbine cascade with low Reynolds number[J]. Journal of Propulsion Technology, 2008, 29(2): 208-213. doi: 10.3321/j.issn:1001-4055.2008.02.016
    [31]
    HERGT A, STEINERT W, GRUND S. Design and experimental investigation of a compressor cascade for low Reynolds number conditions[R]. ISABE-2013-1104, 2013.
    [32]
    MAHALLATI A, MCAULIFFE B R, SJOLANDER S A, et al. Aerodynamics of a low-pressure turbine airfoil at low Rey-nolds numbers-part Ⅰ: steady flow measurements[J]. Journal of Turbomachinery, 2013, 135(1): 1-9. doi: 10.1115/1.4006319
    [33]
    RIVIR R, SONDERGAARD R, DAHLSTROM M, et al. Low Reynolds number turbine blade cascade calculations[R]. WL-TR-2087, 1996.
    [34]
    OLHOFER M, SENDHOFF B, SCHREIBER H. Advanced high turning compressor airfoils for low Reynolds number condition part 1: design and optimization[R]. GT2003-38458, 2003.
    [35]
    MARTINSTETTER M, NIEHUIS R, FRANKE M. Passive boundary layer control on a highly loaded low pressure turbine cascade[C]//Proceedings of ASME Turbo Expo 2010: Power for Land. 2010. doi: 10.1115/GT2010-22739
    [36]
    MICHÁLEK J, MONALDI M, ARTS T. Aerodynamic performance of a very high lift low pressure turbine airfoil (T106C) at low Reynolds and high Mach number with effect of free stream turbulence intensity[J]. Journal of Turbomachi-nery, 2012, 134(6): 1-10. doi: 10.1115/1.4006291
    [37]
    STURM W, FOTTNER L. The high-speed cascade wind-tunnel of the german armed forces university munich. [C]//Proc of 8th Symposium on Measuring Techniques for Transonic and Supersonic Flows in Cascade and Turbomachines. 1985.
    [38]
    BETTNER J L. Experimental investigation in an annular cascade sector of highly loaded turbine stator blading volume Ⅳ: performance of jet-flapped blade[R]. NASA CR-1423, 1969.
    [39]
    WIERS S H, FRANSSON T H. Experimental investigation of aerodynamic effects of film cooling on a modern 3-dimensional nozzle guide vane[R]. ISABE-2001-1097, 2001.
    [40]
    WIERS S H, FRANSSON T H, RÅDEKLINT U, et al. Flow field measurements in a cold flow annular sector turbine cascade test facility and an annular sector cascade test facility operating at near-engine conditions[C]//Proceedings of ASME Turbo Expo 2001: Power for Land, Sea, and Air. 2014. doi: 10.1115/2001-GT-0491
    [41]
    滕礼志, 孙鹏, 傅文广, 等. 导流板结构对扇形叶栅试验件周期性影响的模拟研究[J]. 热能动力工程, 2017, 32(6): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS201706009.htm

    TENG L Z, SUN P, FU W G, et al. Numerical study on the influence of baffle structure on flow periodicity in sectorial cascade[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(6): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS201706009.htm
    [42]
    唐国庆, 黄康才, 薛伟鹏. 超跨声涡轮扇形叶栅试验流场周期性设计[J]. 燃气涡轮试验与研究, 2018, 31(3): 27-31, 13. doi: 10.3969/j.issn.1672-2620.2018.03.006

    TANG G Q, HUANG K C, XUE W P. Periodic design of sector cascade test flow field for supersonic and transonic turbine[J]. Gas Turbine Experiment and Research, 2018, 31(3): 27-31, 13. doi: 10.3969/j.issn.1672-2620.2018.03.006
    [43]
    朱兰, 张剑, 卿雄杰. 高压涡轮导向器扇形叶栅试验及改进设计验证[J]. 燃气涡轮试验与研究, 2014, 27(5): 19-24. doi: 10.3969/j.issn.1672-2620.2014.05.004

    ZHU L, ZHANG J, QING X J. Experiment and improved design verification on the sector cascade of high pressure turbine nozzle[J]. Gas Turbine Experiment and Research, 2014, 27(5): 19-24. doi: 10.3969/j.issn.1672-2620.2014.05.004
    [44]
    王欢, 孙鹏, 徐林峰, 等. 压气机扇形叶栅出口流场周向均匀性影响因素[J]. 大连海事大学学报, 2019, 45(2): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201902011.htm

    WANG H, SUN P, XU L F, et al. Influence factors of the flow field circumferential uniformity at the sector cascade outlet of compressor[J]. Journal of Dalian Maritime University, 2019, 45(2): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201902011.htm
    [45]
    姜正礼, 凌代军, 王晖. 高压涡轮导向器扇形叶栅试验研究[J]. 燃气涡轮试验与研究, 2006, 19(1): 17-20, 53. doi: 10.3969/j.issn.1672-2620.2006.01.004

    JIANG Z L, LING D J, WANG H. Experimental investigation on the sector cascade of high pressure turbine guide[J]. Gas Turbine Experiment and Research, 2006, 19(1): 17-20, 53. doi: 10.3969/j.issn.1672-2620.2006.01.004
    [46]
    YASA T, PANIAGUA G, FRIDH J, et al. Performance of a nozzle guide vane in subsonic and transonic regimes tested in an annular sector[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010. doi: 10.1115/GT2010-22901
    [47]
    POVEY T, JONES T V, OLDFIELD M L G. On a novel annular sector cascade technique[C]//Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air. 2004. doi: 10.1115/GT2004-53904
    [48]
    孟福生, 高杰, 郑群, 等. 大子午扩张涡轮扇形叶栅变工况性能实验研究[J]. 推进技术, 2019, 40(5): 986-995. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201905005.htm

    MENG F S, GAO J, ZHENG Q, et al. Experimental study on large meridional expansion annular sector cascades with variable working conditions[J]. Journal of Propulsion Technology, 2019, 40(5): 986-995. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201905005.htm
    [49]
    侯安平, 周盛. 轴流式叶轮机时序效应的机理探讨[J]. 航空动力学报, 2003, 18(1): 70-75. doi: 10.3969/j.issn.1000-8055.2003.01.012

    HOU A P, ZHOU S. Probe into the mechanism of clocking effect in turbomachinery[J]. Journal of Aerospace Power, 2003, 18(1): 70-75. doi: 10.3969/j.issn.1000-8055.2003.01.012
    [50]
    周盛, 侯安平, 弓志强, 等. 关于轴流压气机的非定常两代流型[J]. 航空学报, 2005, 26(1): 1-7. doi: 10.3321/j.issn:1000-6893.2005.01.001

    ZHOU S, HOU A P, GONG Z Q, et al. Two generations of unsteady flow type for axial compressor[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(1): 1-7. doi: 10.3321/j.issn:1000-6893.2005.01.001
    [51]
    刘景梅, 周盛. 叶轮机械新流型探索雏议[J]. 航空动力学报, 1995, 10(3): 205-209. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI503.000.htm

    LIU J M, ZHOU S. Preliminary search for new flow-types in turbomachinery[J]. Journal of Aerospace Power, 1995, 10(3): 205-209. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI503.000.htm
    [52]
    SIEVERDING C H, OTTOLIA D, BAGNERA C, et al. Unsteady turbine blade wake characteristics[C]//Proc of the Volume 6: Turbo Expo 2003, Parts A and B. 2003. doi: 10.1115/gt2003-38934
    [53]
    周莉, 李妍, 王占学. 串列式叶栅扩压器非定常流动研究[J]. 工程热物理学报, 2017, 38(7): 1571-1576. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201707028.htm

    ZHOU L, LI Y, WANG Z X. Numerical investigation of unsteady flow in tandem cascades diffuser[J]. Journal of Engineering Thermophysics, 2017, 38(7): 1571-1576. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201707028.htm
    [54]
    李军, 苏明. 涡轮叶栅非定常流动的PIV实验[J]. 华中科技大学学报(自然科学版), 2007, 35(S1): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG2007S1037.htm

    LI J, SU M. Experiment on turbine blade unsteady flow with PIV[J]. Journal of Huazhong University of Science and Technology Nature Science, 2007, 35(S1): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG2007S1037.htm
    [55]
    李少华, 王梅丽, 杜利梅, 等. 叶栅内非定常流动特性的频谱分析[J]. 动力工程学报, 2011, 31(5): 352-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DONG201105008.htm

    LIS H, WANG M L, DU L M, et al. Frequency analysis on unsteady flow characteristics of cascade[J]. Power Engineering, 2011, 31(5): 352-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DONG201105008.htm
    [56]
    侯安平, 姜正礼, 凌代军, 等. 亚音压气机平面叶栅内流动的声激励试验研究[J]. 北京航空航天大学学报, 2005, 31(1): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200501013.htm

    HOU A P, JIANG Z L, LING D J, et al. Experimental research of sound excitation on flow of subsonic compressor blade profile in planar cascade tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(1): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200501013.htm
    [57]
    弓志强, 陆亚钧, 葛敬东. 环形扩压叶栅流动非定常控制方法的PIV研究[J]. 航空动力学报, 2006, 21(3): 455-460. doi: 10.3969/j.issn.1000-8055.2006.03.004

    GONG Z Q, LU Y J, GE J D. Investigation of unsteady flow control in an annular compressor cascade using PIV[J]. Journal of Aerospace Power, 2006, 21(3): 455-460. doi: 10.3969/j.issn.1000-8055.2006.03.004
    [58]
    刘飞, 刘辉, 涂运冲, 等. 非定常尾迹控制叶栅分离研究[J]. 工程热物理学报, 2012, 33(6): 949-952. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201206012.htm

    LIU F, LIU H, TU Y C, et al. Analysis of controlling separated flow on cascade by unsteady wake[J]. Journal of Engineering Thermophysics, 2012, 33(6): 949-952. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201206012.htm
    [59]
    杨慧, 何力, 王延荣. 压气机线性振荡叶栅气弹试验研究(一): 非定常气动响应[J]. 航空学报, 2008, 29(4): 795-803. doi: 10.3321/j.issn:1000-6893.2008.04.005

    YANG H, HE L, WANG Y R. Experimental study on aeroelasticity in linear oscillating compressor cascade. part Ⅰ unsteady aerodynamic response[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 795-803. doi: 10.3321/j.issn:1000-6893.2008.04.005
    [60]
    杨青真, 施永强, 肖军, 等. 气固耦合振动叶栅非定常流动分析研究[J]. 应用力学学报, 2006, 23(2): 167-171. doi: 10.3969/j.issn.1000-4939.2006.02.001

    YANG Q Z, SHI Y Q, XIAO J, et al. Unsteady flow analysis of vibrating cascade under flow/structure coupled condition[J]. Chinese Journal of Applied Mechanics, 2006, 23(2): 167-171. doi: 10.3969/j.issn.1000-4939.2006.02.001
    [61]
    BUFFUM D H, CAPECE V R, KING A J, et al. Oscillating cascade aerodynamics at large mean incidence[R]. NASA Technical Memorandum 107247, 1996.
    [62]
    VOGT D M, FRANSSON T H. Experimental investigation of mode shape sensitivity of an oscillating LPT cascade at design and off-design conditions[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. 2006. doi: 10.1115/GT2006-91196.
    [63]
    VOGT D M, FRANSSON T H. A new turbine cascade for aeromechanical testing[C]//Proc of the 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines. 2002.
    [64]
    YANG H, HE L. Experiment on linear compressor cascade with 3-D blade oscillation[C]//Proc of the Volume 4: Turbo Expo 2003. 2003. doi: 10.1115/gt2003-38484
    [65]
    孙锡九, 张卫伟. 振荡叶栅非定常流场的实验研究[J]. 工程热物理学报, 1988, 9(4): 320-326. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB198804006.htm

    SUN X J, ZHANG W W. Study on unsteady flow field of an oscillating cascade[J]. Journal of Engineering Thermophysics, 1988, 9(4): 320-326. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB198804006.htm
    [66]
    STIEGER R D, HODSON H P. The transition mechanism of highly-loaded LP turbine blades[C]//Proc of the Volume 5: Turbo Expo 2003, Parts A and B. 2003. doi: 10.1115/gt2003-38304
    [67]
    HILGENFELD L, PFITZNER M. Unsteady boundary layer development due to wake passing effects on a highly loaded linear compressor cascade[C]//Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air. 2008. doi: 10.1115/GT2004-53186
    [68]
    屈骁, 张燕峰, 卢新根, 等. 上游尾迹对高负荷低压涡轮非定常气动性能的影响[J]. 工程热物理学报, 2019, 40(9): 2004-2011. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201909009.htm

    QU X, ZHANG Y F, LU X G, et al. Effects of periodic wakes on unsteady aerodynamic performance of high-lift low-pressure turbine cascade[J]. Journal of Engineering Thermophysics, 2019, 40(9): 2004-2011. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201909009.htm
    [69]
    刘火星, 周琨, 邹正平. 涡轮叶栅尾迹对二次流影响的试验研究[J]. 工程热物理学报, 2009, 30(3): 397-401. doi: 10.3321/j.issn:0253-231X.2009.03.010

    LIU H X, ZHOU K, ZOU Z P. The investigation for influence of wake on secondary flow in a turbine cascade[J]. Journal of Engineering Thermophysics, 2009, 30(3): 397-401. doi: 10.3321/j.issn:0253-231X.2009.03.010
    [70]
    孙忠民, 鞠凤鸣, 韩万金. 在尾迹扰动下高负荷静叶流动的非定常特性[J]. 汽轮机技术, 2018, 60(1): 31-36. doi: 10.3969/j.issn.1001-5884.2018.01.008

    SUN Z M, JU F M, HAN W J. Research on unsteady flow characteristics of the highly loaded blades cascade under wake interference[J]. Turbine Technology, 2018, 60(1): 31-36. doi: 10.3969/j.issn.1001-5884.2018.01.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1429) PDF downloads(161) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return