Volume 36 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
LONG Y S,YUAN J,ZHAO S H,et al. Influence of nozzle wall temperature on plate test in arc-heated wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):47-53. doi: 10.11729/syltlx20210055
Citation: LONG Y S,YUAN J,ZHAO S H,et al. Influence of nozzle wall temperature on plate test in arc-heated wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):47-53. doi: 10.11729/syltlx20210055

Influence of nozzle wall temperature on plate test in arc-heated wind tunnel

doi: 10.11729/syltlx20210055
  • Received Date: 2021-05-31
  • Accepted Date: 2021-11-22
  • Rev Recd Date: 2021-10-30
  • Publish Date: 2022-12-30
  • In order to study the influence of the nozzle’s wall temperature on the plate test in the arc-heated wind tunnel, a thermal insulation semi-elliptical nozzle was designed. A plate test was adopted in the arc-heated wind tunnel with the semi-elliptical nozzle. The bottom of the nozzle wall was connected with the plate model. The flow extended to the surface of the model during the test. The surface heat flux and equilibrium temperature of the model under the conditions of the hot nozzle wall and the cold nozzle wall were measured and analyzed, respectively. The results show that the enthalpy of the nozzle ranged from 1.00 MJ/kg to 2.55 MJ/kg. Compared with the condition of the cold nozzle wall, the surface heat flux of the hot nozzle wall increased by 4.7% to 15.0%, and the equilibrium temperature increased by up to 4.24%. In the thermal protection test, the influence of the nozzle wall temperature on the results of the plate test should be considered, and it is necessary to increase the enthalpy of the flow.
  • loading
  • [1]
    HURWICZ H, MASCOLA R. Thermal protection systems application research of materials properties and structural concepts[R]. Technical Doc-umentary Report No. ML-TDR-64-82, 1965.
    [2]
    BOUSLOG S A, MOORE B, LAWSON I. X-33 metallic TPS tests in NASA LaRC high temperature tunnel[C]// Proc of the 37th AIAA Aerospace Sciences Meeting and Exhibit January. 1999.
    [3]
    VOLAND R, ROCK K, HUEBNER L, et al. Hyper-X engine design and ground test program[C]//Proc of the 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 1998: 1532. doi: 10.2514/6.1998-1532
    [4]
    中国人民解放军总装备部军事训练教材编辑工作委员会. 高超声速气动热和热防护[M]. 北京: 国防工业出版社, 2003.
    [5]
    BALTER-PETERSON A, NICHOLS F, MIFSUD B, et al. Arc jet testing in NASA Ames Research Center thermophysics facilities[C]//Proc of the AlAA 4th International Aerospace Planes Conference. 1992: 5041. doi: 10.2514/6.1992-5041
    [6]
    BRUCE W E, HORN D D, FELDERMAN E J, et al. Arc heater development at AEDC[C]//Proc of the 25th Plasmadynamics and Lasers Conference. 1994: 2591. doi: 10.2514/6.1994-2591
    [7]
    GOKCEN T, STEWART D A. Computational analysis of semi-elliptical nozzle arc-jet experiments: calibration plate and wing leading edge[C]//Proc of the 35th AIAA Fluid Dynamics Conference and Exhibition. 2005: 4887. doi: 10.2514/6.2005-4887
    [8]
    SIMMS J, STIEGLITZ W. Semi-elliptical nozzle structural test facility[C]//Proc of the 2nd International Aerospace Planes Conference. 1990: 5227. doi: 10.2514/6.1990-5227
    [9]
    LOOMIS M, HUI F, POLSKY S, et al. Arc-jet semi-elliptic nozzle simulations and validation in support of X-33 TPS testing[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibi. 1998: 864. doi: 10.2514/6.1998-864
    [10]
    THOMAS S, VOLAND R, GUY R. Test flow calibration study of the Langley Arc-Heated Scramjet Test Facility[C]//Proc of the 23rd Joint Propulsion Conference. 1987: 2165. doi: 10.2514/6.1987-2165
    [11]
    隆永胜,杨远剑,袁竭,等. 电弧风洞半椭圆喷管流场测试分析[J]. 科学技术与工程,2016,16(1):147-150. doi: 10.3969/j.issn.1671-1815.2016.01.027

    LONG Y S,YANG Y J,YUAN J,et al. Calibration and analyses flow of the semi ellipse nozzle in arc wind tunnel[J]. Science Technology and Engineering,2016,16(1):147-150. doi: 10.3969/j.issn.1671-1815.2016.01.027
    [12]
    American Society for Testing and Materials. Standard test method for calculation of stagnation enthalpy from heat transfer theory and experimental measurements of stagnation-point heat transfer and pressure: ASTM-E637-05[S/OL]. [2021-05-20]. https://catalogue.library.cern/literature/xhv10-cy803.
    [13]
    赵俭. 高温气流温度测量与校准技术[J]. 计测技术,2018,38(6):42-47. doi: 10.11823/j.issn.1674-5795.2018.06.10

    ZHAO J. High gas temperature measurement and calibration technology[J]. Metrology & Measurement Technology,2018,38(6):42-47. doi: 10.11823/j.issn.1674-5795.2018.06.10
    [14]
    朱新新,王辉,杨庆涛,等. 弧光灯热流标定系统的光学设计[J]. 光学学报,2016,36(11):1122001. doi: 10.3788/AOS201636.1122001

    ZHU X X,WANG H,YANG Q T,et al. Optical design of arc lamp heat flux calibration system[J]. Acta Optica Sinica,2016,36(11):1122001. doi: 10.3788/AOS201636.1122001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views (236) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return