Volume 36 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
CHEN S Y,DING T,KONG R Z,et al. Heat flux measurement of small scale gap corner at high Mach numbers[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):89-96. doi: 10.11729/syltlx20210063
Citation: CHEN S Y,DING T,KONG R Z,et al. Heat flux measurement of small scale gap corner at high Mach numbers[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):89-96. doi: 10.11729/syltlx20210063

Heat flux measurement of small scale gap corner at high Mach numbers

doi: 10.11729/syltlx20210063
  • Received Date: 2021-06-17
  • Accepted Date: 2021-08-07
  • Rev Recd Date: 2021-07-16
  • Publish Date: 2022-12-30
  • To investigate the aero-heating environment of distributed insulation tiles on re-entry flight vehicles, integrated coaxial thermocouples of only 0.3 mm in diameter are utilized to measure the heat flux at high Mach numbers. Intense interacted flow may prevail in interested regions such as the gap corner with small curvature radius. This makes it difficult to measure the heat flux. The curvature radius of the gap corner, height difference between insulation tiles, gap width, boundary layer state and Mach number are investigated to determine the influence on the aero-heating environment. Temporal signals are analyzed to obtain fluctuation characteristics of the transient heat flux. Results show that the inverse step leads to obvious heat flux rise. Difference in boundary layer state means notable discrepancy in the heat flux distribution over the gap corner. Higher Mach number induces less fluctuated heat signals and moderate heat flux. Negative heat flux phenomena emerges under some conditions. Results are useful to TPS design of insulation tiles, and increase the knowledge of the mechanism of the complex flow induced by gaps and steps.
  • loading
  • [1]
    PALMER G, KONTINOS D, SHERMAN B. Surface heating effects of X-33 vehicle TPS panel bowing, steps, and gaps[C]//Proc of the 36th AIAA Aerospace Sciences Meet-ing and Exhibit. 1998. doi: 10.2514/6.1998-865
    [2]
    DARYABEIGI K, KNUTSON J, CUNNINGTON G. Heat transfer measurement and modeling in rigid high-temperature reusable surface insulation tiles[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011. doi: 10.2514/6.2011-345
    [3]
    VENKATAPATHY E, FELDMAN J, ELLERBY D, et al. NASA’s advanced TPS materials and technology develop-ment: multi-functional materials and systems for space exploration[R]. ARC-E-DAA-TN39418, 2017.
    [4]
    WILDER M C, PRABHU D K. Turbulent heat transfer experiments in hypersonic free flight on surfaces represen-tative of woven TPS materials[R]. NASA 20205011354, 2020.
    [5]
    HOLLIS B R. Boundary-Layer Transition and Surface Heating Measurements on a Hypersonic Inflatable Aerody-namic Decelerator with Simulated Flexible TPS[R]. AIAA 2017-3122, 2017. doi: 10.2514/6.2017-3122
    [6]
    DUNAVANT J C,THROCKMORTON D A. Aerodynamic heat transfer to RSI tile surfaces and gap intersections[J]. Journal of Spacecraft and Rockets,1974,11(6):437-440. doi: 10.2514/3.62098
    [7]
    FUJII K, INOUE Y. Aerodynamic heating measurement on ceramic tile region of Hypersonic Flight Experiment (HYFL-EX)[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998. doi: 10.2514/6.1998-605
    [8]
    GARIMELLA S V,SHOLLENBERGER K A,EIBECK P A,et al. Flow and heat transfer in simulated re-entry vehicle tile gaps[J]. Journal of Thermophysics and Heat Transfer,1993,7(4):644-650. doi: 10.2514/3.473
    [9]
    唐贵明. 狭窄缝隙内的热流分布实验研究[J]. 流体力学实验与测量,2000,14(4):1-6. doi: 10.3969/i.issn.1672-9897.2000.02.001

    TANG G M. Experimental investigation of heat transfer distributions in a deep gap[J]. Experiments and Measure-ments in Fluid Mechanics,2000,14(4):1-6. doi: 10.3969/i.issn.1672-9897.2000.02.001
    [10]
    秦强,马建军. 陶瓷防热瓦间缝隙气动加热规律研究[J]. 装备环境工程,2013,10(5):42-46,51. doi: 10.7643/issn.1672-9242.2013.05.009

    QIN Q,MA J J. Aerodynamic heating in gaps among ceramic insulating tiles array[J]. Equipment Environmental Engineering,2013,10(5):42-46,51. doi: 10.7643/issn.1672-9242.2013.05.009
    [11]
    邱波. 高超声速飞行器横向缝隙内部涡旋结构及热环境数值模拟研究[D]. 绵阳: 中国空气动力研究与发展中心, 2015.

    QIU B. Numerical investigation for vortexes and aeroyna-dmic heating environment in transverse gaps on hypersonic vehicle[D]. Mianyang: China Aerodynamics Research and Development Center, 2015.
    [12]
    黄国. 高超声速环境下缝隙热环境的数值模拟研究[D]. 北京: 北京交通大学, 2017.

    HUANG G. Numerical simulation for heating environment of gap in hypersonic flow[D]. Beijing: Beijing Jiaotong Univer-sity, 2017.
    [13]
    黄杰,姚卫星,孔斌,等. 防热瓦式防护系统缝隙热控设计规律[J]. 南京航空航天大学学报,2019,51(3):366-373. doi: 10.16356/j.1005?2615.2019.03.014

    HUANG J,YAO W X,KONG B,et al. Thermal control designing rules of gaps for tile thermal protection system[J]. Journal of Nanjing University of Aeronautics & Astronau-tics,2019,51(3):366-373. doi: 10.16356/j.1005?2615.2019.03.014
    [14]
    靳旭红,黄飞,程晓丽,等. 稀薄流区高超声速飞行器表面缝隙流动结构及气动热环境的分子模拟[J]. 航空动力学报,2019,34(1):201-209. doi: 10.13224/j.cnki.jasp.2019.01.023

    JIN X H,HUANG F,CHENG X L,et al. Monte Carlo simulation for the flow-field structure and aerodynamic heating due to cavities on hypersonic vehicle surfaces in the rarefied flow regime[J]. Journal of Aerospace Power,2019,34(1):201-209. doi: 10.13224/j.cnki.jasp.2019.01.023
    [15]
    龚红明,陈景秋,李理,等. 湍流条件下防热瓦缝隙热环境特性实验研究[J]. 实验流体力学,2015,29(2):13-18,25. doi: 10.11729/syltlx20140093

    GONG H M,CHEN J Q,LI L,et al. Experimental investigationon the aerodynamic heating to tile-to-tile gaps in tubulent bouandry layer[J]. Journal of Experiments in Fluid Mechanics,2015,29(2):13-18,25. doi: 10.11729/syltlx20140093
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (279) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return