Volume 36 Issue 2
May  2022
Turn off MathJax
Article Contents
ZHAO H,SHE W X,GAO Q,et al. TPIV study for near-field tip vortex from an elliptical hydrofoil[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):82-91. doi: 10.11729/syltlx20210108
Citation: ZHAO H,SHE W X,GAO Q,et al. TPIV study for near-field tip vortex from an elliptical hydrofoil[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):82-91. doi: 10.11729/syltlx20210108

TPIV study for near-field tip vortex from an elliptical hydrofoil

doi: 10.11729/syltlx20210108
  • Received Date: 2021-08-26
  • Accepted Date: 2021-12-02
  • Rev Recd Date: 2021-11-30
  • Available Online: 2022-05-26
  • Publish Date: 2022-05-19
  • Tip vortex cavitation (TVC) is a common type of cavitation in hydraulic machinery and marine propulsion. Since TVC inception is highly relevant to the vortical flow around the blade tip of turbines and propellers, it is essential to give more insights into the flow field of the tip vortex to reveal the inherent relationship between flow properties and TVC. Measurement for the tip vortex from an elliptical hydrofoil has been conducted in a high-speed cavitation tunnel utilizing tomographic particle image velocimetry (TPIV) with high time-resolution. The results show that the wandering motion of the tip vortex is noticeable in the near field. The time-averaging process without taking into account wandering motion can bring extra errors into the time-averaged flow field. Therefore, it is necessary to filter out the wandering motion for the quantitative analysis on vortex characteristics. The tip vortex is under roll-up process and can be greatly affected by the shear layer from the hydrofoil, which contributes to the asymmetric circumferential velocity distribution and a high-axial-velocity area between the shear layer sheet and the vortex core. The tip vortex contains the most of the turbulence energy within its core and the turbulence energy is dominated by the vertical and spanwise velocity fluctuations which are considered as the main source of the fluctuating pressure in the core center combining with previous researches.
  • loading
  • [1]
    KÜCHEMANN D. Report on the I. U. T. A. M. symposium on concentrated vortex motions in fluids[J]. Journal of Fluid Mechanics,1965,21(1):1-20. doi: 10.1017/s0022112065000010
    [2]
    DREYER M,DECAIX J,MÜNCH-ALLIGNÉ C,et al. Mind the gap: a new insight into the tip leakage vortex using stereo-PIV[J]. Experiments in Fluids,2014,55(11):1-13. doi: 10.1007/s00348-014-1849-7
    [3]
    FELLI M,FALCHI M. Propeller tip and hub vortex dynamics in the interaction with a rudder[J]. Experiments in Fluids,2011,51(5):1385-1402. doi: 10.1007/s00348-011-1162-7
    [4]
    潘森森, 彭晓星. 空化机理[M]. 北京: 国防工业出版社, 2013.

    PAN S S, PENG X X. Physical mechanism of cavitation[M]. Beijing: National Defense Industry Press, 2013.
    [5]
    刘玉文,徐良浩,宋明太,等. 水翼叶梢涡空化实验研究进展[J]. 实验流体力学,2020,34(5):1-11. doi: 10.11729/syltlx20190083

    LIU Y W,XU L H,SONG M T,et al. Experimental research progress of hydrofoil tip vortex cavitation[J]. Journal of Experiments in Fluid Mechanics,2020,34(5):1-11. doi: 10.11729/syltlx20190083
    [6]
    McCORMICK B W Jr. On cavitation produced by a vortex trailing from a lifting surface[J]. Journal of Basic Enginee-ring,1962,84(3):369-379. doi: 10.1115/1.3657328
    [7]
    BILLET M L,HOLL J W. Scale effects on various types of limited cavitation[J]. Journal of Fluids Engineering,1981,103(3):405-414. doi: 10.1115/1.3240800
    [8]
    PAUCHET A,BRIANGON-MARJOLLET L. Recent results on tip vortex cavitation scale effects at high Reynolds numbers[J]. WIT Transactions on The Built Environment,1993(1):1-8. doi: 10.2495/NEVA930131
    [9]
    FRUMAN D H,CERRUTTI P,PICHON T,et al. Effect of hydrofoil planform on tip vortex roll-up and cavitation[J]. Journal of Fluids Engineering,1995,117(1):162-169. doi: 10.1115/1.2816806
    [10]
    POGOZELSKI E, SHEKARRIZ A, KATZ J, et al. Three dimensional near field behavior of a tip vortex developing on an elliptic foil[C]//Proc of the 31st Aerospace Sciences Meeting. 1993: 865. doi: 10.2514/6.1993-865
    [11]
    STINEBRING D R,FARRELL K J,BILLET M L. The structure of a three-dimensional tip vortex at high Reynolds numbers[J]. Journal of Fluids Engineering,1991,113(3):496-503. doi: 10.1115/1.2909524
    [12]
    ARNDT R E A. Cavitation in vortical flows[J]. Annual Review of Fluid Mechanics,2002,34(1):143-175. doi: 10.1146/annurev.fluid.34.082301.114957
    [13]
    ZHANG L X,ZHANG N,PENG X X,et al. A review of studies of mechanism and prediction of tip vortex cavitation inception[J]. Journal of Hydrodynamics,2015,27(4):488-495. doi: 10.1016/s1001-6058(15)60508-x
    [14]
    PENNINGS P C,WESTERWEEL J,TERWISGA T J C. Flow field measurement around vortex cavitation[J]. Expe-riments in Fluids,2015,56(11):1-13. doi: 10.1007/s00348-015-2073-9
    [15]
    DREYER M. Mind the gap: tip leakage vortex dynamics and cavitation in axial turbines[D]. Lausanne: École Poly-technique Fédérale de Lausanne, 2015. doi: 10.5075/epfl-thesis-6611
    [16]
    PENG X X,XU L H,LIU Y W,et al. Experimental measurement of tip vortex flow field with/without cavitation in an elliptic hydrofoil[J]. Journal of Hydrodynamics,2017,29(6):939-953. doi: 10.1016/s1001-6058(16)60808-9
    [17]
    BOSSCHERS J. An analytical and semi-empirical model for the viscous flow around a vortex cavity[J]. International Journal of Multiphase Flow,2018,105:122-133. doi: 10.1016/j.ijmultiphaseflow.2018.03.021
    [18]
    ASNAGHI A,SVENNBERG U,BENSOW R E. Large eddy simulations of cavitating tip vortex flows[J]. Ocean Enginee-ring,2020,195:106703. doi: 10.1016/j.oceaneng.2019.106703
    [19]
    CHANG N,GANESH H,YAKUSHIJI R,et al. Tip vortex cavitation suppression by active mass injection[J]. Journal of Fluids Engineering,2011,133(11):111301. doi: 10.1115/1.4005138
    [20]
    LEE S J,SHIN J W,ARNDT R E A,et al. Attenuation of the tip vortex flow using a flexible thread[J]. Experiments in Fluids,2017,59(1):1-12. doi: 10.1007/s00348-017-2476-x
    [21]
    AMINI A,SEO J,RHEE S H,et al. Mitigating tip vortex cavitation by a flexible trailing thread[J]. Physics of Fluids,2019,31(12):127103. doi: 10.1063/1.5126376
    [22]
    AMINI A,RECLARI M,SANO T,et al. Suppressing tip vortex cavitation by winglets[J]. Experiments in Fluids,2019,60(11):1-15. doi: 10.1007/s00348-019-2809-z
    [23]
    ASNAGHI A,SVENNBERG U,GUSTAFSSON R,et al. Investigations of tip vortex mitigation by using roughness[J]. Physics of Fluids,2020,32(6):065111. doi: 10.1063/5.0009622
    [24]
    SVENNBERG U,ASNAGHI A,GUSTAFSSON R,et al. Experimental analysis of tip vortex cavitation mitigation by controlled surface roughness[J]. Journal of Hydrodynamics,2020,32(6):1059-1070. doi: 10.1007/s42241-020-0073-6
    [25]
    WANG H P,GAO Q,WEI R J,et al. Intensity-enhanced MART for tomographic PIV[J]. Experiments in Fluids,2016,57(5):1-19. doi: 10.1007/s00348-016-2176-y
    [26]
    SCARANO F. Iterative image deformation methods in PIV[J]. Measurement Science and Technology,2002,13(1):1-19. doi: 10.1088/0957-0233/13/1/201
    [27]
    ZHOU J,ADRIAN R J,BALACHANDAR S,et al. Mecha-nisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics,1999,387:353-396. doi: 10.1017/s002211209900467x
    [28]
    BHAGWAT M J,RAMASAMY M. Effect of tip vortex aperiodicity on measurement uncertainty[J]. Experiments in Fluids,2012,53(5):1191-1202. doi: 10.1007/s00348-012-1348-7
    [29]
    DEVENPORT W J,RIFE M C,LIAPIS S I,et al. The structure and development of a wing-tip vortex[J]. Journal of Fluid Mechanics,1996,312:67-106. doi: 10.1017/s0022112096001929
    [30]
    IUNGO G V,SKINNER P,BURESTI G. Correction of wandering smoothing effects on static measurements of a wing-tip vortex[J]. Experiments in Fluids,2009,46(3):435-452. doi: 10.1007/s00348-008-0569-2
    [31]
    薛栋,潘翀,袁先士,等. 低雷诺数下翼尖涡统计特性实验研究[J]. 实验流体力学,2019,33(5):36-41. doi: 10.11729/syltlx20180129

    XUE D,PAN C,YUAN X S,et al. Experimental investiga-tion on the characteristics of wingtip vortex at low Reynolds number[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):36-41. doi: 10.11729/syltlx20180129
    [32]
    HEYES A L, JONES R F, SMITH D A R. Wandering of wing-tip vortices[C]//Proceedings of 12th international sym-posium on the applications of laser techniques to fluid me-chanics. 2004.
    [33]
    BERESH S J,HENFLING J F,SPILLERS R W. Meander of a fin trailing vortex and the origin of its turbulence[J]. Experiments in Fluids,2010,49(3):599-611. doi: 10.1007/s00348-010-0825-0
    [34]
    邱思逸,程泽鹏,向阳,等. 基于线性稳定性分析的翼尖涡摇摆机制[J]. 航空学报,2019,40(8):122712.

    QIU S Y,CHENG Z P,XIANG Y,et al. Mechanism of wingtip vortex wandering based on linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica,2019,40(8):122712.
    [35]
    LEE T,PEREIRA J. Nature of wakelike and jetlike axial tip vortex flows[J]. Journal of Aircraft,2010,47(6):1946-1954. doi: 10.2514/1.c000225
    [36]
    SKINNER S N,GREEN R B,ZARE-BEHTASH H. Wingtip vortex structure in the near-field of swept-tapered wings[J]. Physics of Fluids,2020,32(9):095102. doi: 10.1063/5.0016353
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (2351) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return