Volume 36 Issue 2
May  2022
Turn off MathJax
Article Contents
YAN B,SUN Y C,ZHU J J,et al. Investigation of unburned/preheated area characteristics of a premixed flame under transverse acoustic excitation based on acetone and CH2O PLIF technology[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):139-145. doi: 10.11729/syltlx20210111
Citation: YAN B,SUN Y C,ZHU J J,et al. Investigation of unburned/preheated area characteristics of a premixed flame under transverse acoustic excitation based on acetone and CH2O PLIF technology[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):139-145. doi: 10.11729/syltlx20210111

Investigation of unburned/preheated area characteristics of a premixed flame under transverse acoustic excitation based on acetone and CH2O PLIF technology

doi: 10.11729/syltlx20210111
  • Received Date: 2021-08-31
  • Accepted Date: 2021-11-17
  • Rev Recd Date: 2021-11-17
  • Available Online: 2022-05-26
  • Publish Date: 2022-05-19
  • The thermoacoustic instability is one of the most difficult problems in the development of aerospace propulsion systems. The research on the thermoacoustic instability mechanism of premixed flame can be useful to realize and solve the thermoacoustic oscillation problems of the practical engines. The characteristics of the premixed flame excited by acoustic wave are investigated by the simultaneous acetone/CH2O planar laser-induced fluorescence(PLIF) technique, and the variation of unburnt zone and preheating zone is acquired. It is shown that the effect of the acoustic wave on the flame is more obvious at lower frequency and higher Sound Pressure Level (SPL). As the frequency decreases and SPL increases, the change of the flow structure gradually aggravates. It is also found that the morphology of unburned zone/preheating zone changes periodically with the acoustic wave phase. The edge of acetone PLIF images is extracted, and the dependence of the lifting height, diffusion area of the premixed gas on the acoustic wave frequency and the SPL is obtained. The evolution process of the flame morphology under typical acoustic frequency and pressure level is acquired by the simultaneous acetone/CH2O PLIF images. The phenomenon and mechanism of combustion flameout under typical acoustic condition are analyzed.
  • loading
  • [1]
    ARMBRUSTER W,HARDI J S,SUSLOV D,et al. Injector-driven flame dynamics in a high-pressure multi-element oxygen–hydrogen rocket thrust chamber[J]. Journal of Propulsion and Power,2019,35(3):632-644. doi: 10.2514/1.b37406
    [2]
    LIEUWEN T C. Unsteady Combustor Physics[M]. Cam-bridge: Cambridge University Press, 2012. doi: 10.1017/cbo9781139059961
    [3]
    OH S,JI H,KIM Y. FDF-based combustion instability analysis for stabilization effects of a slotted plate in a multiple flame combustor[J]. Aerospace Science and Tech-nology,2017,70:95-107. doi: 10.1016/j.ast.2017.07.045
    [4]
    JI S X,WANG B. Modeling and analysis of triggering pulse to thermoacoustic instability in an end-burning-grain model solid rocket motor[J]. Aerospace Science and Technology,2019,95:105409. doi: 10.1016/j.ast.2019.105409
    [5]
    LI L,ZHAO D. Prediction of stability behaviors of longitudinal and circumferential eigenmodes in a choked thermoacoustic combustor[J]. Aerospace Science and Tech-nology,2015,46:12-21. doi: 10.1016/j.ast.2015.06.024
    [6]
    WANG Q,ZHANG Y,TANG H J,et al. Visualization of diffusion flame/vortex structure and dynamics under acou-stic excitation[J]. Combustion Science and Technology,2012,184(10-11):1445-1455. doi: 10.1080/00102202.2012.693419
    [7]
    JANGI M,KOBAYASHI H. Droplet combustion in presence of airstream oscillation: mechanisms of enhancement and hysteresis of burning rate in microgravity at elevated pressure[J]. Combustion and Flame,2010,157(1):91-105. doi: 10.1016/j.combustflame.2009.06.004
    [8]
    JANGI M,SHAW B,KOBAYASHI H. Thermal-drag and transition from quasi-steady to highly-unsteady combustion of a fuel droplet in the presence of upstream velocity oscillations[J]. Flow,Turbulence and Combustion,2009,84(1):97-123. doi: 10.1007/s10494-009-9230-2
    [9]
    LI J,DUROX D,RICHECOEUR F,et al. Analysis of chemiluminescence,density and heat release rate fluctua-tions in acoustically perturbed laminar premixed flames[J]. Combustion and Flame,2015,162(10):3934-3945. doi: 10.1016/j.combustflame.2015.07.031
    [10]
    JOCHER A,FOO K K,SUN Z W,et al. Impact of acoustic forcing on soot evolution and temperature in ethylene-air flames[J]. Proceedings of the Combustion Institute,2017,36(1):781-788. doi: 10.1016/j.proci.2016.08.025
    [11]
    SCHULLER T,DUCRUIX S,DUROX D,et al. Modeling tools for the prediction of premixed flame transfer func-tions[J]. Proceedings of the Combustion Institute,2002,29(1):107-113. doi: 10.1016/S1540-7489(02)80018-9
    [12]
    LIEUWEN T. Modeling premixed combustion-acoustic wave interactions: a review[J]. Journal of Propulsion and Power,2003,19(5):765-781. doi: 10.2514/2.6193
    [13]
    FOO K K,SUN Z W,MEDWELL P R,et al. Experimental investigation of acoustic forcing on temperature, soot volume fraction and primary particle diameter in non-premixed laminar flames[J]. Combustion and Flame,2017,181:270-282. doi: 10.1016/j.combustflame.2017.04.002
    [14]
    HASSAN M I,WU T W,SAITO K. A combination effect of reburn, post-flame air and acoustic excitation on NOx reduc-tion[J]. Fuel,2013,108:231-237. doi: 10.1016/j.fuel.2013.02.032
    [15]
    FOO K K,SUN Z W,MEDWELL P R,et al. Influence of nozzle diameter on soot evolution in acoustically forced laminar non-premixed flames[J]. Combustion and Flame,2018,194:376-386. doi: 10.1016/j.combustflame.2018.05.026
    [16]
    ZHENG L K,JI S D,ZHANG Y. Lifted and reattached behaviour of laminar premixed flame under external acoustic excitation[J]. Experimental Thermal and Fluid Science,2018,98:683-692. doi: 10.1016/j.expthermflusci.2018.07.013
    [17]
    McKINNEY D J,DUNN-RANKIN D. Acoustically driven extinction in a droplet stream flame[J]. Combustion Science and Technology,2000,161(1):27-48. doi: 10.1080/00102200008935810
    [18]
    BEISNER E,WIGGINS N D,YUE K B,et al. Acoustic flame suppression mechanics in a microgravity environment[J]. Microgravity Science and Technology,2015,27(3):141-144. doi: 10.1007/s12217-015-9422-4
    [19]
    FRIEDMAN A N,STOLIAROV S I. Acoustic extinction of laminar line-flames[J]. Fire Safety Journal,2017,93:102-113. doi: 10.1016/j.firesaf.2017.09.002
    [20]
    NIEGODAJEW P,ŁUKASIAK K,RADOMIAK H,et al. Application of acoustic oscillations in quenching of gas burner flame[J]. Combustion and Flame,2018,194:245-249. doi: 10.1016/j.combustflame.2018.05.007
    [21]
    阚瑞峰,夏晖晖,许振宇,等. 激光吸收光谱流场诊断技术应用研究与进展[J]. 中国激光,2018,45(9):0911005. doi: 10.3788/CJL201845.0911005

    KAN R F,XIA H H,XU Z Y,et al. Research and progress of flow field diagnosis based on laser absorption spectro-scopy[J]. Chinese Journal of Lasers,2018,45(9):0911005. doi: 10.3788/CJL201845.0911005
    [22]
    ALDÉN M,BOOD J,LI Z S,et al. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques[J]. Pro-ceedings of the Combustion Institute,2011,33(1):69-97. doi: 10.1016/j.proci.2010.09.004
    [23]
    SJÖHOLM J,ROSELL J,LI B,et al. Simultaneous visualization of OH,CH,CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence[J]. Proceedings of the Combustion Institute,2013,34(1):1475-1482. doi: 10.1016/j.proci.2012.05.037
    [24]
    HARRINGTON J E,SMYTH K C. Laser-induced fluore-scence measurements of formaldehyde in a methane/air diffusion flame[J]. Chemical Physics Letters,1993,202(3-4):196-202. doi: 10.1016/0009-2614(93)85265-P
    [25]
    LOZANO A,YIP B,HANSON R K. Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence[J]. Experiments in Fluids,1992,13(6):369-376. doi: 10.1007/BF00223244
    [26]
    THURBER M C,GRISCH F,KIRBY B J,et al. Measu-rements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics[J]. Applied Optics,1998,37(21):4963-4978. doi: 10.1364/ao.37.004963
    [27]
    THURBER M C,HANSON R K. Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248,266,and 308 nm[J]. Applied Physics B,1999,69(3):229-240. doi: 10.1007/s003400050799
    [28]
    ROTHAMER D A,SNYDER J A,HANSON R K,et al. Optimization of a tracer-based PLIF diagnostic for simul-taneous imaging of EGR and temperature in IC engines[J]. Applied Physics B,2010,99(1-2):371-384. doi: 10.1007/s00340-009-3815-2
    [29]
    LI Z S,LI B,SUN Z W,et al. Turbulence and combustion interaction: high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH,OH,and CH2O in a piloted premixed jet flame[J]. Combustion and Flame,2010,157(6):1087-1096. doi: 10.1016/j.combustflame.2010.02.017
    [30]
    ZHANG M,WANG J H,XIE Y L,et al. Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames[J]. International Journal of Hydrogen Energy,2013,38(26):11421-11428. doi: 10.1016/j.ijhydene.2013.05.051
    [31]
    ZHANG M,WANG J H,WU J,et al. Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures[J]. International Journal of Hydrogen Energy,2014,39(10):5176-5185. doi: 10.1016/j.ijhydene.2014.01.038
    [32]
    WANG J H,NIE Y H,ZHANG W J,et al. Network topology of turbulent premixed Bunsen flame at elevated pressure and turbulence intensity[J]. Aerospace Science and Technology,2019,94:105361. doi: 10.1016/j.ast.2019.105361
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (2301) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return