Volume 36 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
HAN R K,LIU Z Y,QIAN W Q,et al. Spatio-temporal reconstruction method of flow field based on deep neural network[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):118-126. doi: 10.11729/syltlx20210124
Citation: HAN R K,LIU Z Y,QIAN W Q,et al. Spatio-temporal reconstruction method of flow field based on deep neural network[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):118-126. doi: 10.11729/syltlx20210124

Spatio-temporal reconstruction method of flow field based on deep neural network

doi: 10.11729/syltlx20210124
  • Received Date: 2021-11-10
  • Accepted Date: 2022-03-18
  • Rev Recd Date: 2022-01-12
  • Available Online: 2022-07-12
  • Publish Date: 2022-07-04
  • The flow field PIV measurement method cost a lot, but the measurement results have low spatial and temporal resolution. The spatio-temporal reconstruction method of flow field based on experimental and numerical simulation data is studied. In order to realize the high-resolution spatio-temporal reconstruction of the experimentally measured low-resolution data, a flow field spatio-temporal reconstruction method based on deep neural network is proposed. A hybrid deep neural network based on convolutional neural network and long-short-term memory neural network is constructed. This hybrid deep neural network is trained to learn the spatio-temporal evolution features of the flow field. After the training is completed, it can be used to reconstruct the experimental data into spatio-temporal high-resolution results. The test results show that when the spatial high-resolution reconstruction is performed alone, the mean square error between the reconstructed flow field and the ground truth flow field is about 0.0065, and the number of data points is 51 times more than that of the input field. When the flow field is reconstructed to high resolution in time and space at the same time, the mean square error be maintained at about 0.065, and the density in the time dimension is 5 times more than that of the input field. It is proved that this method can greatly improve the efficiency of the experiment and save the cost of the experiment.
  • loading
  • [1]
    ADRIAN R J. Multi-point optical measurements of simultaneous vectors in unsteady flow—a review[J]. International Journal of Heat and Fluid Flow,1986,7(2):127-145. doi: 10.1016/0142-727X(86)90062-7
    [2]
    王福君,王洪平,高琪,等. 鱼游动涡结构PIV实验研究[J]. 实验流体力学,2020,34(5):20-28. doi: 10.11729/syltlx20200039

    WANG F J,WANG H P,GAO Q,et al. PIV experimental study on fish swimming vortex structure[J]. Journal of Experiments in Fluid Mechanics,2020,34(5):20-28. doi: 10.11729/syltlx20200039
    [3]
    王昕. 面向非定常流场的实时自适应PIV测量技术研究[D]. 武汉: 华中科技大学, 2017.

    WANG X. Research of real-time adaptive PIV measurement technique oriented to unsteady flow field[D]. Wuhan: Huazhong University of Science and Technology, 2017.
    [4]
    LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444. doi: 10.1038/nature14539
    [5]
    KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84-90. doi: 10.1145/3065386
    [6]
    SAINATH T N, MOHAMED A R, KINGSBURY B, et al. Deep convolutional neural networks for LVCSR[C]//Proc of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. 2013: 8614-8618. doi: 10.1109/ICASSP.2013.6639347
    [7]
    XIONG H Y,ALIPANAHI B,LEE L J,et al. RNA splicing: The human splicing code reveals new insights into the genetic determinants of disease[J]. Science,2015,347(6218):1254806. doi: 10.1126/science.1254806
    [8]
    LING J L,KURZAWSKI A,TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics,2016,807:155-166. doi: 10.1017/jfm.2016.615
    [9]
    RAISSI M,YAZDANI A,KARNIADAKIS G E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations[J]. Science,2020,367(6481):1026-1030. doi: 10.1126/science.aaw4741
    [10]
    叶舒然,张珍,王一伟,等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报,2021,42(4):524736.

    YE S R,ZHANG Z,WANG Y W,et al. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica,2021,42(4):524736.
    [11]
    HUI X Y,BAI J Q,WANG H,et al. Fast pressure distribution prediction of airfoils using deep learning[J]. Aerospace Science and Technology,2020,105:105949. doi: 10.1016/j.ast.2020.105949
    [12]
    王怡星,韩仁坤,刘子扬,等. 流体力学深度学习建模技术研究进展[J]. 航空学报,2021,42(4):225-244.

    WANG Y X,HAN R K,LIU Z Y,et al. Progress of deep learning modeling technology for fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica,2021,42(4):225-244.
    [13]
    SEKAR V,JIANG Q H,SHU C,et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids,2019,31(5):057103. doi: 10.1063/1.5094943
    [14]
    JIN X W,CHENG P,CHEN W L,et al. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder[J]. Physics of Fluids,2018,30(4):047105. doi: 10.1063/1.5024595
    [15]
    HAN R K,WANG Y X,ZHANG Y,et al. A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network[J]. Physics of Fluids,2019,31(12):127101. doi: 10.1063/1.5127247
    [16]
    惠心雨,袁泽龙,白俊强,等. 基于深度学习的非定常周期性流动预测方法[J]. 空气动力学学报,2019,37(3):462-469. doi: 10.7638/kqdlxxb-2019.0003

    HUI X Y,YUAN Z L,BAI J Q,et al. A method of unsteady periodic flow field prediction based on the deep learning[J]. Acta Aerodynamica Sinica,2019,37(3):462-469. doi: 10.7638/kqdlxxb-2019.0003
    [17]
    FUKAMI K,FUKAGATA K,TAIRA K. Super-resolution reconstruction of turbulent flows with machine learning[J]. Journal of Fluid Mechanics,2019,870:106-120. doi: 10.1017/jfm.2019.238
    [18]
    LAGEMANN C,LAGEMANN K,MUKHERJEE S,et al. Deep recurrent optical flow learning for particle image velocimetry data[J]. Nature Machine Intelligence,2021,3(7):641-651. doi: 10.1038/s42256-021-00369-0
    [19]
    朱浩然,高琪,王洪平,等. 基于机器学习方法的三维粒子重构技术[J]. 实验流体力学,2021,35(3):88-93. doi: 10.11729/syltlx20200141

    ZHU H R,GAO Q,WANG H P,et al. Particle reconstruction of volumetric particle image velocimetry with strategy of machine learning[J]. Journal of Experiments in Fluid Mechanics,2021,35(3):88-93. doi: 10.11729/syltlx20200141
    [20]
    蔡声泽,许超,高琪,等. 基于深度神经网络的粒子图像测速算法[J]. 空气动力学学报,2019,37(3):455-461. doi: 10.7638/kqdlxxb—2019.0042

    CAI S Z,XU C,GAO Q,et al. Particle image velocimetry based on a deep neural network[J]. Acta Aerodynamica Sinica,2019,37(3):455-461. doi: 10.7638/kqdlxxb—2019.0042
    [21]
    GUO C Y,FAN Y W,HAN Y,et al. Deep-learning-based liquid extraction algorithm for particle image velocimetry in two-phase flow experiments of an object entering water[J]. Applied Ocean Research,2021,108:102526. doi: 10.1016/j.apor.2021.102526
    [22]
    YU C D,FAN Y W,BI X J,et al. Deep particle image velocimetry supervised learning under light conditions[J]. Flow Measurement and Instrumentation,2021,80:102000. doi: 10.1016/j.flowmeasinst.2021.102000
    [23]
    ABADI M, AGARWAL A, BARHAM P, et al. TensorFlow: Large-scale machine learning on heterogeneous systems[EB/OL]. [2021-11-22]. https://arxiv.org/pdf/1603.04467.pdf/.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (1769) PDF downloads(190) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return