Volume 36 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
CHEN J B,LIU B L,CHEN W H,et al. Key technology for model access system in cryogenic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022,36(1):37-43. doi: 10.11729/syltlx20210140
Citation: CHEN J B,LIU B L,CHEN W H,et al. Key technology for model access system in cryogenic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022,36(1):37-43. doi: 10.11729/syltlx20210140

Key technology for model access system in cryogenic wind tunnel

doi: 10.11729/syltlx20210140
  • Received Date: 2021-10-15
  • Accepted Date: 2021-11-29
  • Rev Recd Date: 2021-11-08
  • Available Online: 2022-03-02
  • Publish Date: 2022-03-17
  • The model access system is an important part of the cryogenic wind tunnel, and it is the core system to realize low temperature model replacement. The model access system of the cryogenic wind tunnel has the characteristics of complex structure, large scale, high functional integration and high requirements for environmental conditions. By contrasting overseas the design of the model access system of the cryogenic wind tunnel and introducing the domestic current situation of related technologies, the key technologies of the design for the model access system of the cryogenic wind tunnel are discussed in this article, such as the large volume and low dew point air drying system, temperature regulating system with a wide temperature range, large-tonnage and high precision model cart, large lock door, moisture emission control in dry space, etc.. The technical difficulties and research approaches of each aforementioned key technology are expounded, respectively. Finally, some proposals are offered for the design of the model access system of the cryogenic wind tunnel.
  • loading
  • [1]
    赖欢,陈振华,高荣,等. 大型高速低温风洞冷量回收的方法研究[J]. 西安交通大学学报,2016,50(6):136-142. doi: 10.7652/xjtuxb201606021

    LAI H,CHEN Z H,GAO R,et al. Cold energy recycle from cryogenic wind tunnel exhaust system[J]. Journal of Xi'an Jiaotong University,2016,50(6):136-142. doi: 10.7652/xjtuxb201606021
    [2]
    赖欢,陈万华,孙德文,等. 0.3 m低温连续式跨声速风洞结构设计[J]. 实验流体力学,2020,34(5):89-96. doi: 10.11729/syltlx20190156

    LAI H,CHEN W H,SUN D W,et al. The structural design for 0.3 m cryogenic continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2020,34(5):89-96. doi: 10.11729/syltlx20190156
    [3]
    GOODYER M J. The cryogenic wind tunnel[J]. Progress in Aerospace Sciences,1992,29(3):193-220. doi: 10.1016/0376-0421(92)90008-6
    [4]
    BRUCE W E Jr, GLOSS B B. The US national transonic facility, NTF[R]. AGARD-R-774, 1989.
    [5]
    GREEN J,QUEST J. A short history of the European Transonic Wind Tunnel ETW[J]. Progress in Aerospace Sciences,2011,47(5):319-368. doi: 10.1016/j.paerosci.2011.06.002
    [6]
    廖达雄,黄知龙,陈振华,等. 大型低温高雷诺数风洞及其关键技术综述[J]. 实验流体力学,2014,28(2):1-6,20. doi: 10.11729/syltlx20130102

    LIAO D X,HUANG Z L,CHEN Z H,et al. Review on large-scale cryogenic wind tunnel and key technologies[J]. Journal of Experiments in Fluid Mechanics,2014,28(2):1-6,20. doi: 10.11729/syltlx20130102
    [7]
    BAALS D D. Design considerations of the National Transonic Facility[J]. Advances in Engineering Science,1976,4:1583-1602.
    [8]
    FULLER D E, GLOSS B B, NYSTROM D. Guide for users of the National Transonic Facility[R]. NASA-TM-83124, 1981.
    [9]
    VAIRO D M. A Microsoft Project-based planning, tracking, and management tool for the National Transonic Facility’s model changeover process[R]. NASA/CR-1998-208968, 1998.
    [10]
    BISSETT O W, HUDSON C M. Selected major modifica-tions to the National Transonic Facility[R]. AIAA 2009-419, 2009. doi: 10.2514/6.2009-419
    [11]
    VIEHWEGER G. The concept of the Kryo-Kanal-Köln(KKK) operational experience, flow quality, model handling and half model testing technique[R]. AGARD-R-812, 1997.
    [12]
    SCHULZ M, QUEST J. New techniques for operation in cryogenic windtunnels[R]. AIAA 2007-749, 2007. doi: 10.2514/6.2007-749
    [13]
    曾瑞璇,颜承初,李梅. 除湿等级划分及深度除湿技术研究进展[J]. 制冷学报,2020,41(6):12-21. doi: 10.3969/j.issn.0253-4339.2020.06.012

    ZENG R X,YAN C C,LI M. Dehumidification classification and advanced research in deep dehumidification technology[J]. Journal of Refrigeration,2020,41(6):12-21. doi: 10.3969/j.issn.0253-4339.2020.06.012
    [14]
    马广顺,马振库,赵云峰. 大型低温环境试验室制冷系统设计[J]. 装备环境工程,2013,10(2):96-98,108.

    MA G S,MA Z K,ZHAO Y F. Design of refrigeration system for large environmental test chamber[J]. Equipment Environmental Engineering,2013,10(2):96-98,108.
    [15]
    徐君,吴静怡. 基于气液换热器出口过热度的热环境试验降温过程的控制规律研究[J]. 制冷技术,2017,37(3):1-6. doi: 10.3969/j.issn.2095-4468.2017.03.101

    XU J,WU J Y. Investigation on control principle of thermal environment cooling process based on superheat degree of gas-liquid heat exchanger[J]. Chinese Journal of Refrigeration Technology,2017,37(3):1-6. doi: 10.3969/j.issn.2095-4468.2017.03.101
    [16]
    张福全. 载人航天工程中的地面设备[J]. 导弹与航天运载技术,2003(6):38-46. doi: 10.3969/j.issn.1004-7182.2003.06.008

    ZHANG F Q. The ground equipment for the manned space flight[J]. Missiles and Space Vehicles,2003(6):38-46. doi: 10.3969/j.issn.1004-7182.2003.06.008
    [17]
    褚寅斌. 大型龙门吊吊装提升安全分析[J]. 工程建设与设计,2020(4):146-147,186. doi: 10.13616/j.cnki.gcjsysj.2020.02.267

    CHU Y B. Safety analysis of large-scale gantry crane hoisting[J]. Construction & Design for Engineering,2020(4):146-147,186. doi: 10.13616/j.cnki.gcjsysj.2020.02.267
    [18]
    宋远佳,陈振华,赖欢,等. 低温风洞绝热系统的研究现状及其关键技术[J]. 哈尔滨工业大学学报,2019,51(7):63-69. doi: 10.11918/j.issn.0367-6234.201801115

    SONG Y J,CHEN Z H,LAI H,et al. Development and key technology of cryogenic wind tunnel insulation system[J]. Journal of Harbin Institute of Technology,2019,51(7):63-69. doi: 10.11918/j.issn.0367-6234.201801115
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (1763) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return