Volume 36 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
CHEN X,ZHAN J X,CHEN K,et al. Unsteady aerodynamic modeling research and virtual flight test verification[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):65-72. doi: 10.11729/syltlx20210143
Citation: CHEN X,ZHAN J X,CHEN K,et al. Unsteady aerodynamic modeling research and virtual flight test verification[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):65-72. doi: 10.11729/syltlx20210143

Unsteady aerodynamic modeling research and virtual flight test verification

doi: 10.11729/syltlx20210143
  • Received Date: 2021-10-18
  • Accepted Date: 2022-04-20
  • Rev Recd Date: 2022-04-14
  • Available Online: 2022-07-12
  • Publish Date: 2022-07-04
  • Unsteady aerodynamic modeling involves aerodynamics, flight mechanics, flight control and other fields, which is the key of aircraft high angle of attack database. The traditional aerodynamic model is composed of static aerodynamic, rotating balance and dynamic derivative data, which cannot describe unsteady aerodynamics exactly. Recurrent Neural Network (RNN) structure is a kind of neural network structure for processing and predicting sequence data, which is widely used in the field of artificial intelligence. RNN has the same time–dependent characteristic as unsteady aerodynamics. The application of RNN on the unsteady aerodynamic modeling has been researched. The forced motion test and virtual flight test have been used for unsteady aerodynamic model’s verification. In the forced motion wind tunnel test, comparing the aerodynamic forces of cobra maneuver, the result demonstrates that the RNN model is more accurate than the traditional model. In the virtual flight test, comparing the movement parameters curve of the wind tunnel test and simulation, the results also demonstrate that the RNN model is closer to the wind tunnel test than the traditional dynamic derivative model.
  • loading
  • [1]
    ABZUG M J. Airplane stability and control[M]. Cambridge: Cambridge University Press, 1977.
    [2]
    TOBAK M. On the use of indicial function concept in the analysis of unsteady motions of wings and wing-tail combinations[R]. NACA R-1188, 1954.
    [3]
    TOBAK M, PEARSON W E. A study of nonlinear longitudinal dynamic stability[R]. NASA TR R-209, 1964.
    [4]
    TOBAK M. On nonlinear longitudinal dynamic stability[R]. AGARD CP-17, 1966.
    [5]
    TOBAK M, SCHIFF L B. On the formulation of the aerodynamic characteristics in aircraft dynamics[R]. NASA TR R-456, 1976.
    [6]
    SCHIFF L, TOBAK M, MALCOLM G. Mathematical modeling of the aerodynamics of high-angle-of-attack maneu-vers[C]//Proc of the 6th Atmospheric Flight Mechanics Conference. 1980. doi: 10.2514/6.1980-1583
    [7]
    TOBAK M, SCHIFF L B. Aerodynamic mathematical modeling-basic concepts[R]. AGARD LS-114, 1981.
    [8]
    TOBAK M, CHAPMAN G T, SCHIFF L B. Mathematical modeling of the aerodynamic characteristics in flight dynamics[R]. NASA TM-85880, 1984.
    [9]
    GOMAN M,KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft,1994,31(5):1109-1115. doi: 10.2514/3.46618
    [10]
    GOMAN M G, KHRABROV A N, USOLTSEV S P. Unsteady aerodynamic model for large amplitude maneuvers and its parameter identification[C]// Proc of the The International Federation of Automatic Control, 11th IFAC Symposium on System Identification. 1997.
    [11]
    ABRAMOV N, KHRABROV A, KOLINKO K, et al. Simple wings unsteady aerodynamics at high angles of attack: Experimental and modeling results[C]//Proc of the 24th Atmospheric Flight Mechanics Conference. 1999. doi: 10.2514/6.1999-4013
    [12]
    GREENWELL D, KHRABROV A, GOMAN M, et al. Two-step linear regression method for identification of high incidence unsteady aerodynamic model[C]//Proc of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. 2001. doi: 10.2514/6.2001-4080
    [13]
    WANG Z J, LAN C, BRANDON J. Fuzzy logic modeling of nonlinear unsteady aerodynamics[C]//Proc of the 23rd Atmospheric Flight Mechanics Conference. 1998. doi: 10.2514/6.1998-4351
    [14]
    ROKHSAZ K,STECK J E. Use of neural networks in control of high-alpha maneuvers[J]. Journal of Guidance, Control, and Dynamics,1993,16(5):934-939. doi: 10.2514/3.21104
    [15]
    ROKHSAZ K, STECK J E. Application of artificial neural networks in nonlinear aerodynamics and aircraft design[C]//Proc of the SAE Technical Paper Series. 1993. doi: 10.4271/932533
    [16]
    HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [17]
    汪清, 蔡金师. 基于神经网络的大攻角非定常气动力建模[C]//中国1995飞行力学学术年会论文集. 1995.
    [18]
    陈翔,王海峰,展京霞,等. 基于循环神经网络的非定常气动力建模研究[J]. 气动研究与实验,2020(2):101-108. doi: 10.1162/neco.1997.9.8.1735
    [19]
    李浩. 风洞虚拟飞行试验相似准则和模拟方法研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012.
    [20]
    赵忠良,吴军强,李浩,等. 2.4 m跨声速风洞虚拟飞行试验技术研究[J]. 航空学报,2016,37(2):504-512. doi: 10.7527/S1000-6893.2015.0196

    ZHAO Z L,WU J Q,LI H,et al. Investigation of virtual flight testing technique based on 2.4 m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica,2016,37(2):504-512. doi: 10.7527/S1000-6893.2015.0196
    [21]
    胡静,李潜. 风洞虚拟飞行试验技术初步研究[J]. 实验流体力学,2010,24(1):95-99. doi: 10.3969/j.issn.1672-9897.2010.01.018

    HU J,LI Q. Primary investigation of the virtual flight testing techniques in wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2010,24(1):95-99. doi: 10.3969/j.issn.1672-9897.2010.01.018
    [22]
    郭林亮,祝明红,傅澔,等. 一种低速风洞虚拟飞行试验装置的建模与仿真[J]. 空气动力学学报,2017,35(5):708-717,726. doi: 10.7638/kqdlxxb-2017.0164

    GUO L L,ZHU M H,FU H,et al. Modeling and simulation for a low speed wind tunnel virtual flight test rig[J]. Acta Aerodynamica Sinica,2017,35(5):708-717,726. doi: 10.7638/kqdlxxb-2017.0164
    [23]
    LAWRENCE F, MILLS B. Status update of the AEDC wind tunnel Virtual Flight Testing development program[C]//Proc of the 40th AIAA Aerospace Sciences Meeting & Exhibi. 2002. doi: 10.2514/6.2002-168
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views (1469) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return