Volume 36 Issue 2
May  2022
Turn off MathJax
Article Contents
KANG P,GUO J F,MU K,et al. Experimental study on morphology and flow structure of liquid cone in flow focusing[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):74-81. doi: 10.11729/syltlx20210159
Citation: KANG P,GUO J F,MU K,et al. Experimental study on morphology and flow structure of liquid cone in flow focusing[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):74-81. doi: 10.11729/syltlx20210159

Experimental study on morphology and flow structure of liquid cone in flow focusing

doi: 10.11729/syltlx20210159
  • Received Date: 2021-10-25
  • Accepted Date: 2022-02-08
  • Rev Recd Date: 2022-01-13
  • Available Online: 2022-05-26
  • Publish Date: 2022-05-19
  • Flow focusing is one of capillary flow techniques that can produce monodisperse droplets, particles and capsules at micro-/nano-scales. In flow focusing, the formation of a stable liquid cone upstream of the small orifice is a prerequisite for further jet generation and efficient preparation of microdroplets. In this work, dimensional analysis is first used to analyze the effects of the focused phase flow rate, driving gas pressure difference, and the distance between the capillary and the focusing orifice on the stability of the liquid cone. Based on the aspirating flow focusing experimental platform, the morphology and stability of the liquid cone are observed, verifying the theoretical analysis. In addition, the stable parameter range of the liquid cone is obtained by adjusting the main process parameters. Moreover, the flow field is visualized by adding tracer particles into the fluid of the focused phase, and the high-speed photography is employed to capture the flow field images, which are analyzed quantitatively to explore the structure of the recirculation zone inside the liquid cone. It is found that the generation of the recirculation cell is closely related to the tangential velocity distribution on both sides of the cone interface, and the size of the recirculation cell is affected significantly by the driving gas pressure difference, the flow rate of focused phase, and the geometric parameters.
  • loading
  • [1]
    BARRERO A,LOSCERTALES I G. Micro- and nano-particles via capillary flows[J]. Annual Review of Fluid Mechanics,2007,39:89-106. doi: 10.1146/annurev.fluid.39.050905.110245
    [2]
    GAÑÁN-CALVO A M,MONTANERO J M,MARTÍN-BANDERAS L,et al. Building functional materials for health care and pharmacy from microfluidic principles and Flow Focusing[J]. Advanced Drug Delivery Reviews,2013,65(11-12):1447-1469. doi: 10.1016/j.addr.2013.08.003
    [3]
    ZHU P G,WANG L Q. Passive and active droplet genera-tion with microfluidics: a review[J]. Lab on a Chip,2016,17(1):34-75. doi: 10.1039/c6lc01018k
    [4]
    SUN T M,ZHANG Y S,PANG B,et al. Engineered nanoparticles for drug delivery in cancer therapy[J]. Angewandte Chemie (International Ed in English),2014,53(46):12320-12364. doi: 10.1002/anie.201403036
    [5]
    LARYEA G N,NO S Y. Development of electrostatic pressure-swirl nozzle for agricultural applications[J]. Journal of Electrostatics,2003,57(2):129-142. doi: 10.1016/S0304-3886(02)00122-5
    [6]
    GAONKAR A G, VASISHT N, KHARE A R, et al. Microen-capsulation in the food industry: a practical implementation guide[M]. Amsterdam: Elsevier, 2014.
    [7]
    XU R X,HUANG J W,XU J S,et al. Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer[J]. Journal of Biomedical Optics,2009,14(3):034020. doi: 10.1117/1.3147424
    [8]
    LOSCERTALES I G,BARRERO A,GUERRERO I,et al. Micro/nano encapsulation via electrified coaxial liquid jets[J]. Science,2002,295(5560):1695-1698. doi: 10.1126/science.1067595
    [9]
    BOCK N,WOODRUFF M A,HUTMACHER D W,et al. Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications[J]. Poly-mers,2011,3(1):131-149. doi: 10.3390/polym3010131
    [10]
    GAÑÁN-CALVO A M. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams[J]. Physical Review Letters,1998,80(2):285-288. doi: 10.1103/physrevlett.80.285
    [11]
    GAÑÁN-CALVO A,CASTRO-HERNÁNDEZ E,FLORES-MOSQUERA M,et al. Massive, generic, and controlled microencapsulation by flow focusing: some physicochemical aspects and new applications[J]. Journal of Flow Chemis-try,2015,5(1):48-54. doi: 10.1556/jfc-d-14-00022
    [12]
    DATTA S S,ABBASPOURRAD A,AMSTAD E,et al. 25th anniversary article: double emulsion templated solid micro-capsules: mechanics and controlled release[J]. Advanced Materials,2014,26(14):2205-2218. doi: 10.1002/adma.201305119
    [13]
    MARTÍN-BANDERAS L,FLORES-MOSQUERA M,RIESCO-CHUECA P,et al. Flow focusing: a versatile technology to produce size-controlled and specific-morphology microparticles[J]. Small,2005,1(7):688-692. doi: 10.1002/smll.200500087
    [14]
    GAÑÁN-CALVO A M,GONZÁLEZ-PRIETO R,RIESCO-CHUECA P,et al. Focusing capillary jets close to the continuum limit[J]. Nature Physics,2007,3(10):737-742. doi: 10.1038/nphys710
    [15]
    SI T,FENG H X,LUO X S,et al. Formation of steady compound cone-jet modes and multilayered droplets in a tri-axial capillary flow focusing device[J]. Microfluidics and Nanofluidics,2015,18(5-6):967-977. doi: 10.1007/s10404-014-1486-8
    [16]
    SI T,YIN C S,GAO P,et al. Steady cone-jet mode in compound-fluidic electro-flow focusing for fabricating multi-compartment microcapsules[J]. Applied Physics Letters,2016,108(2):021601. doi: 10.1063/1.4939632
    [17]
    GAÑÁN-CALVO A M,RIESCO-CHUECA P. Jetting–dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid: the minimum flow rate in flow focusing[J]. Journal of Fluid Mechanics,2006,553:75-84. doi: 10.1017/s0022112006009013
    [18]
    GAÑÁN-CALVO A M,LÓPEZ-HERRERA J M,RIESCO-CHUECA P. The combination of electrospray and flow focusing[J]. Journal of Fluid Mechanics,2006,566:421-445. doi: 10.1017/s0022112006002102
    [19]
    司廷,田瑞军,李广滨,等. 电场作用下流动聚焦的实验研究[J]. 力学学报,2011,43(6):1030-1036. doi: 10.6052/0459-1879-2011-6-lxxb2011-156

    SI T,TIAN R J,LI G B,et al. Experimental study of the flow focusing under an electric field[J]. Chinese Journal of Theoretical and Applied Mechanics,2011,43(6):1030-1036. doi: 10.6052/0459-1879-2011-6-lxxb2011-156
    [20]
    UTADA A S,LORENCEAU E,LINK D R,et al. Mono-disperse double emulsions generated from a microcapillary device[J]. Science,2005,308(5721):537-541. doi: 10.1126/science.1109164
    [21]
    陈晓东,胡国庆. 微流控器件中的多相流动[J]. 力学进展,2015,45(1):55-110.

    CHEN X D,HU G Q. Multiphase flow in microfluidic devices[J]. Advances in Mechanics,2015,45(1):55-110.
    [22]
    MU K,QIAO R,GUO J F,et al. Parametric study on stability and morphology of liquid cone in flow focusing[J]. International Journal of Multiphase Flow,2021,135:103507. doi: 10.1016/j.ijmultiphaseflow.2020.103507
    [23]
    穆恺,司廷. 毛细流动聚焦的实验方法及过程控制[J]. 实验流体力学,2020,34(2):46-56. doi: 10.11729/syltlx20190146

    MU K,SI T. Experimental method and process control of capillary flow focusing[J]. Journal of Experiments in Fluid Mechanics,2020,34(2):46-56. doi: 10.11729/syltlx20190146
    [24]
    李广滨. 复合流动聚焦的实验和理论研究[D]. 合肥: 中国科学技术大学, 2016.

    LI G B. Experimental and theoretical investigation on compound flow focusing[D]. Hefei: University of Science and Technology of China, 2016.
    [25]
    SI T,LI F,YIN X Y,et al. Modes in flow focusing and instability of coaxial liquid–gas jets[J]. Journal of Fluid Mechanics,2009,629:1-23. doi: 10.1017/s0022112009006211
    [26]
    MU K,DING H,SI T. Experimental and numerical investigations on interface coupling of coaxial liquid jets in co-flow focusing[J]. Physics of Fluids,2020,32(4):042103. doi: 10.1063/5.0002102
    [27]
    HERRADA M A,GAÑÁN-CALVO A M,OJEDA-MONGE A,et al. Liquid flow focused by a gas: Jetting, dripping, and recirculation[J]. Physical Review E,2008,78(3):036323. doi: 10.1103/physreve.78.036323
    [28]
    ROSELL-LLOMPART J,GAÑÁN-CALVO A M. Turbu-lence in pneumatic flow focusing and flow blurring regimes[J]. Physical Review E,2008,77(3):036321. doi: 10.1103/physreve.77.036321
    [29]
    GORDILLO J M,PÉREZ-SABORID M,GAÑÁN-CALVO A M. Linear stability of co-flowing liquid–gas jets[J]. Journal of Fluid Mechanics,2001,448:23-51. doi: 10.1017/s0022112001005729
    [30]
    GAÑÁN-CALVO A M. Absolute instability of a viscous hollow jet[J]. Physical Review E,2007,75(2):027301. doi: 10.1103/physreve.75.027301
    [31]
    SI T,LI F,YIN X Y,et al. Spatial instability of coflowing liquid-gas jets in capillary flow focusing[J]. Physics of Fluids,2010,22(11):112105. doi: 10.1063/1.3490066
    [32]
    GAÑÁN-CALVO A M,HERRADA M A,GARSTECKI P. Bubbling in unbounded coflowing liquids[J]. Physical Review Letters,2006,96(12):124504. doi: 10.1103/physrevlett.96.124504
    [33]
    LI S B,YANG R,MU K,et al. Thermal effects on the instability of coaxial liquid jets in the core of a gas stream[J]. Physics of Fluids,2019,31(3):032106. doi: 10.1063/1.5087029
    [34]
    李帅兵,杨睿,罗喜胜,等. 气流作用下同轴带电射流的不稳定性研究[J]. 力学学报,2017,49(5):997-1007. doi: 10.6052/0459-1879-17-082

    LI S B,YANG R,LUO X S,et al. Instability study of an electrified coaxial jet in a coflowing gas stream[J]. Chinese Journal of Theoretical and Applied Mechanics,2017,49(5):997-1007. doi: 10.6052/0459-1879-17-082
    [35]
    李帅兵,司廷. 射流破碎的线性不稳定性分析方法[J]. 空气动力学学报,2019,37(3):356-372.

    LI S B,SI T. Advances on linear instability analysis method of jet breakup[J]. Acta Aerodynamica Sinica,2019,37(3):356-372.
    [36]
    QIAO R,MU K,LUO X S,et al. Instability and energy budget analysis of viscous coaxial jets under a radial thermal field[J]. Physics of Fluids,2020,32(12):122103. doi: 10.1063/5.0025880
    [37]
    LI G B,LUO X S,SI T,et al. Temporal instability of coflowing liquid-gas jets under an electric field[J]. Physics of Fluids,2014,26(5):054101. doi: 10.1063/1.4875109
    [38]
    李广滨,司廷,尹协振. 电场作用下无黏聚焦射流的时间不稳定性研究[J]. 力学学报,2012,44(5):876-883. doi: 10.6052/0459-1879-12-032

    LI G B,SI T,YIN X Z. Temporal instability study of inviscid focused jets under an electric field[J]. Chinese Journal of Theoretical and Applied Mechanics,2012,44(5):876-883. doi: 10.6052/0459-1879-12-032
    [39]
    司廷,李广滨,尹协振. 流动聚焦及射流不稳定性[J]. 力学进展,2017,47(1):178-226.

    SI T,LI G B,YIN X Z. Flow focusing and jet instability[J]. Advances in Mechanics,2017,47(1):178-226.
    [40]
    MU K,DING H,SI T. Instability analysis of the cone–jet flow in liquid-driven flow focusing[J]. Microfluidics and Nanofluidics,2018,22(12):1-10. doi: 10.1007/s10404-018-2158-x
    [41]
    YANG C Y,QIAO R,MU K,et al. Manipulation of jet break up length and droplet size in axisymmetric flow focusing upon actuation[J]. Physics of Fluids,2019,31(9):091702. doi: 10.1063/1.5122761
    [42]
    MU K,SI T,LI E Q,et al. Numerical study on droplet generation in axisymmetric flow focusing upon actuation[J]. Physics of Fluids,2018,30(1):012111. doi: 10.1063/1.5009601
    [43]
    VEGA E J,MONTANERO J M,HERRADA M A,et al. Global and local instability of flow focusing: the influence of the geometry[J]. Physics of Fluids,2010,22(6):064105. doi: 10.1063/1.3450321
    [44]
    GAÑÁN-CALVO A M,FERRERA C,TORREGROSA M,et al. Experimental and numerical study of the recirculation flow inside a liquid meniscus focused by air[J]. Microfluidics and Nanofluidics,2011,11(1):65-74. doi: 10.1007/s10404-011-0774-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (2418) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return