Volume 37 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
CHEN J, SHI Z W, YAO Z Y, et al. Research on mode switch logic in Unmanned Aerial Vehicle autonomous soaring[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 113-123 doi: 10.11729/syltlx20210165
Citation: CHEN J, SHI Z W, YAO Z Y, et al. Research on mode switch logic in Unmanned Aerial Vehicle autonomous soaring[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 113-123 doi: 10.11729/syltlx20210165

Research on mode switch logic in Unmanned Aerial Vehicle autonomous soaring

doi: 10.11729/syltlx20210165
  • Received Date: 2021-10-28
  • Accepted Date: 2022-04-07
  • Rev Recd Date: 2022-03-25
  • Publish Date: 2023-06-25
  • Unmanned Aerial Vehicle(UAV) can obtain energy from the thermal updraft in the natural environment by autonomous soaring to improve its endurance. Mode switch is the key of UAV autonomous soaring. For the mode switch problem in autonomous soaring of UAV, an airflow sensing system was designed based on the seven-hole probe and the embedded technology. The airflow sensing system could measure the direction and speed of airflow up to 72° flow angle. Based on the airflow sensing system, the mode switch logic was designed to control the UAV to enter and leave the soaring mode. Using the wind tunnel virtual flight experiment technology, the situation of UAV encountering thermal updraft was simulated in the wind tunnel to verify the feasibility of the designed mode switch logic. Results of the wind tunnel virtual flight experiment show that under the influence of different sizes of updraft, the mode switch logic designed based on the airflow sensing system could make the UAV enter and leave the soaring mode independently, and the mode switch logic could make the UAV leave the soaring mode under different roll angle commands.
  • loading
  • [1]
    AUSTIN R. Unmanned aircraft systems: UAVs design, development and deployment[M]. Chichester: John Wiley & Sons, Ltd., 2010. doi: 10.1002/9780470664797
    [2]
    KOCHAN A. Automation in the sky[J]. Industrial Robot:an International Journal, 2005, 32(6): 468–471. doi: 10.1108/01439910510629181
    [3]
    WEATHERINGTON D, DEPUTY U. Unmanned aircraft systems roadmap 2005-2030[R]. OUSD(AT&L), 2005.
    [4]
    VAN BLYENBURGH P. UAVs: an overview[J]. Air & Space Europe, 1999, 1(5-6): 43–47. doi: 10.1016/S1290-0958(00)88869-3
    [5]
    刘国春. 大展弦比机翼气动外形设计方案研究[J]. 飞机设计, 2011, 31(3): 9–12, 36. doi: 10.3969/j.issn.1673-4599.2011.03.003

    LIU G C. Research on design of high aspect wing shape[J]. Aircraft Design, 2011, 31(3): 9–12, 36. doi: 10.3969/j.issn.1673-4599.2011.03.003
    [6]
    陈学孔, 郭正, 易凡, 等. 低雷诺数翼型的气动外形优化设计[J]. 空气动力学学报, 2014, 32(3): 300–307. doi: 10.7638/kqdlxxb-2012.0134

    CHEN X K, GUO Z, YI F, et al. Aerodynamic shape optimization and design of airfoils with low Reynolds number[J]. Acta Aerodynamica Sinica, 2014, 32(3): 300–307. doi: 10.7638/kqdlxxb-2012.0134
    [7]
    KLESH A T, KABAMBA P T. Solar-powered aircraft: energy-optimal path planning and perpetual endurance[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1320–1329. doi: 10.2514/1.40139
    [8]
    王红波, 祝小平, 周洲, 等. 太阳能无人机螺旋桨滑流气动特性分析[J]. 西北工业大学学报, 2015, 33(6): 913–920. doi: 10.3969/j.issn.1000-2758.2015.06.008

    WANG H B, ZHU X P, ZHOU Z, et al. Aerodynamic investigation on propeller slipstream flows for solar powered airplanes[J]. Journal of Northwestern Polytechnical University, 2015, 33(6): 913–920. doi: 10.3969/j.issn.1000-2758.2015.06.008
    [9]
    RAYLEIGH. The soaring of birds[J]. Nature, 1883, 27(701): 534–535. doi: 10.1038/027534a0
    [10]
    BENCATEL R, TASSO DE SOUSA J, GIRARD A. Atmospheric flow field models applicable for aircraft endurance extension[J]. Progress in Aerospace Sciences, 2013, 61: 1–25. doi: 10.1016/j.paerosci.2013.03.001
    [11]
    CONE C D. Thermal soaring of birds[J]. American Scientist, 1962, 50(1): 180–209.
    [12]
    ALLEN M. Updraft model for development of autonomous soaring uninhabited air vehicles[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006: 1510. doi: 10.2514/6.2006-1510
    [13]
    ALLEN M, LIN V. Guidance and control of an autonomous soaring vehicle with flight test results[C]//Proc of the 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007. doi: 10.2514/6.2007-867
    [14]
    WHARINGTON J. Autonomous control of soaring aircraft by reinforcement learning[D]. Melbourne: Royal Melbourne Institute of Technology, 1998.
    [15]
    KAHVECI N E, IOANNOU P A, MIRMIRANI M D. Adaptive LQ control with anti-windup augmentation to optimize UAV performance in autonomous soaring applications[J]. IEEE Transactions on Control Systems Technology, 2008, 16(4): 691–707. doi: 10.1109/TCST.2007.908207
    [16]
    EDWARDS D. Implementation details and flight test results of an autonomous soaring controller[C]//Proc of the AIAA Guidance, Navigation and Control Conference and Exhibit. 2008. doi: 10.2514/6.2008-7244
    [17]
    吴吉昌, 李成勤, 朱俊强. 七孔探针及其在叶栅二次流动测量中的应用[J]. 航空动力学报, 2011, 26(8): 1879–1886. doi: 10.13224/j.cnki.jasp.2011.08.033

    WU J C, LI C Q, ZHU J Q. Seven-hole probe and its application in the secondary flow for a high-load compressor cascade[J]. Journal of Aerospace Power, 2011, 26(8): 1879–1886. doi: 10.13224/j.cnki.jasp.2011.08.033
    [18]
    VENKATESWARA BABU C, GOVARDHAN M, SITARAM N. A method of calibration of a seven-hole pressure probe for measuring highly three-dimensional flows[J]. Measurement Science and Technology, 1998, 9(3): 468–476. doi: 10.1088/0957-0233/9/3/022
    [19]
    余莉, 滕海山, 明晓. 利用七孔探针对降落伞流场的试验测量研究[J]. 中国空间科学技术, 2007, 27(5): 65–71. doi: 10.3321/j.issn:1000-758X.2007.05.011

    YU L, TENG H S, MING X. Seven-hole probe measurement on parachute flow field[J]. Chinese Space Science and Technology, 2007, 27(5): 65–71. doi: 10.3321/j.issn:1000-758X.2007.05.011
    [20]
    MEIER L, TANSKANEN P, HENG L, et al. Pixhawk: a micro aerial vehicle design for autonomous flight using onboard computer vision[J]. Autonomous Robots, 2012, 33(1): 21–39. doi: 10.1007/s10514-012-9281-4
    [21]
    王文奎, 石柏军. 低速风洞洞体设计[J]. 机床与液压, 2008, 36(5): 93–95.

    WANG W K, SHI B J. The design of low speed wind tunnel[J]. Machine Tool & Hydraulics, 2008, 36(5): 93–95.
    [22]
    张运波. PWM信号的软件实现方法[J]. 微计算机信息, 2002, 18(10): 46–47, 50. doi: 10.3969/j.issn.1008-0570.2002.10.021

    ZHANG Y B. The software implementation method of PWM signal[J]. Control & Automation, 2002, 18(10): 46–47, 50. doi: 10.3969/j.issn.1008-0570.2002.10.021
    [23]
    ALLEN M. Autonomous soaring for improved endurance of a small uninhabitated air vehicle[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 1025. doi: 10.2514/6.2005-1025
    [24]
    CHEN J, SHI Z W, ZHOU M B, et al. Modeling and simulation of UAV static soaring based on multi-hole probe[J]. AIP Advances, 2021, 11(7): 075309. doi: 10.1063/5.0055276
    [25]
    LAWRENCE F, MILLS B. Status update of the AEDC wind tunnel Virtual Flight Testing development program[C]//Proc of the 40th AIAA Aerospace Sciences Meeting & Exhibit. 2002: 168. doi: 10.2514/6.2002-168
    [26]
    COCHRANE J. MacCready theory with uncertain lift and limited altitude[J]. Technical Soaring, 1999, 23: 88–96.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(3)

    Article Metrics

    Article views (168) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return