Volume 37 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
LIU X N, LIU S T, ZHOU G C, et al. Wind tunnel test research on the characteristics of rotor blade-vortex interaction noise[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 84-91 doi: 10.11729/syltlx20210190
Citation: LIU X N, LIU S T, ZHOU G C, et al. Wind tunnel test research on the characteristics of rotor blade-vortex interaction noise[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 84-91 doi: 10.11729/syltlx20210190

Wind tunnel test research on the characteristics of rotor blade-vortex interaction noise

doi: 10.11729/syltlx20210190
  • Received Date: 2021-12-22
  • Accepted Date: 2022-03-17
  • Rev Recd Date: 2022-02-05
  • Publish Date: 2023-06-25
  • The propagation characteristics of the blade–vortex interaction (BVI) noise were tested in the FL–10 wind tunnel of AVIC Aerodynamics Research Institute. The aerodynamic noise of climb, level flight and descent at medium forward speed was measured on a 40% scale model of BO−105 main rotor. Firstly, the “Heyson” wall interference correction method was used to determine the descent angle of the rotor in the wind tunnel, and the complete noise radiation field under the rotor tip–path–plane was obtained through the movement of the measurement array in the airflow. Furthermore, the BVI noise characteristics of the rotor under different flight condition were studied, and the sound pressure time history, spectrum and sound pressure level contour were given. The results indicate that the BVI phenomena occur on both the advancing and retreating side under the descent flight condition. The noise has strong directivity, and radiates toward upstream under the rotor disk toward the advancing side and the downstream on the retreating side.
  • loading
  • [1]
    YU Y H. Rotor blade–vortex interaction noise[J]. Progress in Aerospace Sciences, 2000, 36(2): 97–115. doi: 10.1016/S0376-0421(99)00012-3
    [2]
    Du Vall T, Sim B, Schmitz F. Cabin versus Far-Field Blade- Vortex Interaction Noise Level Trends[C]// Proc of American Helicopter Society Aerodynamics, Acoustics and Test Evaluation Technical Specialists Meeting. 2002.
    [3]
    GENNARETTI M, BERNARDINI G. Novel boundary integral formulation for blade-vortex interaction aerodynamics of helicopter rotors[J]. AIAA Journal, 2007, 45(6): 1169–1176. doi: 10.2514/1.18383
    [4]
    FOGARTY D E, WILBUR W L, SEKULA M K. Prediction of BVI noise for an active twist rotor using a loosely coupled CFD/CSD method and comparison to experimental data[R]// NF1676L-14452, 2012.
    [5]
    史勇杰, 苏大成, 徐国华. 桨叶气动外形对直升机桨–涡干扰噪声影响研究[J]. 南京航空航天大学学报, 2015, 47(2): 235–242. doi: 10.16356/j.1005-2615.2015.02.009

    SHI Y J, SU D C, XU G H. Research on influence of shape parameters on blade-vortex interaction noise of helicopter rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 235–242. doi: 10.16356/j.1005-2615.2015.02.009
    [6]
    史勇杰, 徐国华, 王菲. 直升机旋翼桨–涡干扰脉冲噪声传播特性研究[J]. 南京航空航天大学学报, 2014, 46(2): 212–217.

    SHI Y J, XU G H, WANG F. Propagation characteristics of helicopter rotor blade-vortex interaction noise[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(2): 212–217.
    [7]
    王菲, 徐国华, 胡志远. 大气环境对直升机旋翼桨–涡干扰噪声辐射特性的影响[J]. 南京航空航天大学学报, 2020, 52(2): 304–310.

    WANG F, XU G H, HU Z Y. Effects of atmospheric environment on helicopter blade-vortex interaction noise radiation characteristics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(2): 304–310.
    [8]
    BROOKS T F, JOLLY R J, MARCOLINI M A. Determination of noise source contributions using scaled model rotor acoustic data[R]. NASATP-2825, 1998.
    [9]
    HELLER H, SPLETTSTOESSER W, KLOEPPEL V, et al. HELINOISE—The European Community rotor acoustics research program[C]//Proc of the 15th Aeroacoustics Conference. 1993. doi: 10.2514/6.1993-4358
    [10]
    SPLETTSTOESSER W R, NIESL G, CENEDESE F, et al. Experimental results of the European HELINOISE aeroacoustic rotor test[J]. Journal of the American Helicopter Society, 1995, 40(2): 3–14. doi: 10.4050/jahs.40.2.3
    [11]
    HELLER H, BUCHHOLZ H, SCHULTZ K, et al. Helicopter rotor blade aeroacoustics: a comparison of model-scale wind tunnel and full-scale flight test results [C]// Proc of 20th ICAS Congress. 1996.
    [12]
    YU Y H, GMELIN B, HELLER H, et al. HHC aeroacoustics rotor test at the DNW—the joint German/French/US HART project[C]. Proceedings of the 20th European Rotorcraft Forum. 1994.
    [13]
    SPLETTSTOESSER W R, KUBE R, WAGNER W, et al. Key results from a higher harmonic control aeroacoustic rotor test (HART)[J]. Journal of the American Helicopter Society, 1997, 42(1): 58–78. doi: 10.4050/jahs.42.58
    [14]
    YU Y H, TUNG C, VAN DER WALL B G. The HART-II Test: Rotor Wakes and Aeroacoustics with Higher-Harmonic Pitch Control (HHC) Inputs —The Joint German/French/Dutch/US Project[C]//Proc of 58th Annual Forum of the American Helicopter Society. 2002.
    [15]
    VAN DER WALL B G, BURLEY C L, YU Y, et al. The HART II test - measurement of helicopter rotor wakes[J]. Aerospace Science and Technology, 2004, 8(4): 273–284. doi: 10.1016/j.ast.2004.01.001
    [16]
    JAYARAMAN B, WISSINK A, LIM J, et al. Helios prediction of blade-vortex interaction and wake of the HART II rotor[C]//Proc of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee. 2012: 714. doi: 10.2514/6.2012-714
    [17]
    ARUN KUMAR A, VISWAMURTHY S R, GANGULI R. Correlation of helicopter rotor aeroelastic response with HART-II wind tunnel test data[J]. Aircraft Engineering and Aerospace Technology, 2010, 82(4): 237–248. doi: 10.1108/00022661011082713
    [18]
    YIN J P, WALL B V D, OERLEMANS S. Representative test results from HeliNOVI aeroacoustic main rotor/tail rotor/fuselage test in DNW[C]// Proc of 31th European Rotercraft Forum. 2005.
    [19]
    YIN J P, A DUMMEL, D FALCHERO. Analysis of Tail Rotor noise reduction benefits using HELINOVI aeroacoustic main/tail rotor test and posttest prediction results[C]// Proc of 32th European Rotercraft Forum. 2006.
    [20]
    徐国华, 高正. 悬停状态下模型旋翼噪声试验的初步研究[J]. 空气动力学学报, 1996(1): 68–72.

    XU G H, GAO Z. A preliminary investigation of noise experiment for helicopter model rotor in hover[J]. Acta Aerodynamica Sinica, 1996(1): 68–72.
    [21]
    曹亚雄, 樊枫, 林永峰, 等. 带先进桨尖的模型旋翼悬停噪声计算与试验[J]. 南京航空航天大学学报, 2016, 48(2): 180–185. doi: 10.16356/j.1005-2615.2016.02.005

    CAO Y X, FAN F, LIN Y F, et al. Numerical calculations and test research on aeroacoustics characteristics of model rotors with advanced blade tip in hover[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2): 180–185. doi: 10.16356/j.1005-2615.2016.02.005
    [22]
    刘正江, 黄建萍, 陈焕, 等. 旋翼桨涡干扰噪声特性试验技术研究[J]. 直升机技术, 2019(1): 43–47,42. doi: 10.3969/j.issn.1673-1220.2019.01.010

    LIU Z J, HUANG J P, CHEN H, et al. Study on characteristic of rotor-blade vortex interaction noise[J]. Helicopter Technique, 2019(1): 43–47,42. doi: 10.3969/j.issn.1673-1220.2019.01.010
    [23]
    唐朝, 招启军, 王博, 等. 用于BVI噪声试验的新型涡发生器设计与分析[J]. 南京航空航天大学学报, 2018, 50(2): 157–166. doi: 10.16356/j.1005-2615.2018.02.002

    TANG C, ZHAO Q J, WANG B, et al. Design and analysis of new type vortex generator for BVI noise experiment[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(2): 157–166. doi: 10.16356/j.1005-2615.2018.02.002
    [24]
    HEYSON H H. Linearized theory of wind-tunnel jet-boundary corrections and ground effect for VTOL-STOL aircraft [R]. NASA TR R-124, 1962.
    [25]
    HEYSON H H. FORTRAN programs for calculating wind-tunnel boundary interference [R]. NASA TM X-1740, 1969.
    [26]
    HEYSON H H. Use of superposition in digital computers to obtain wind tunnel interference factors for arbitrary configurations, with particular reference to V/STOL models[R]. NASA TR R-302, 1969.
    [27]
    LANGER H, PETERSON R L, MAIER T H. An experimental evaluation of wind tunnel wall correction methods for helicopter performance [C]// Proceedings of the AHS 52nd Annual Forum. 1996.
    [28]
    李元首, 陈宝, 张雪, 等. 传声器阵列校准技术研究[J]. 现代电子技术, 2014, 37(24): 94–97. doi: 10.3969/j.issn.1004-373X.2014.24.026

    LI Y S, CHEN B, ZHANG X, et al. Calibration technology of microphone array[J]. Modern Electronics Technique, 2014, 37(24): 94–97. doi: 10.3969/j.issn.1004-373X.2014.24.026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (223) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return