Volume 37 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
ZHANG W G, TAN J F, LIU Y K, et al. Advances on helicopter brownout[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 56-75 doi: 10.11729/syltlx20220112
Citation: ZHANG W G, TAN J F, LIU Y K, et al. Advances on helicopter brownout[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 56-75 doi: 10.11729/syltlx20220112

Advances on helicopter brownout

doi: 10.11729/syltlx20220112
  • Received Date: 2022-11-01
  • Accepted Date: 2023-04-03
  • Rev Recd Date: 2023-02-02
  • Available Online: 2023-10-23
  • Publish Date: 2023-10-30
  • The interference of the helicopter rotor and the ground causes the lifting of dust, which leads to the phenomenon of brownout. The phenomenon threatens the flight safety of helicopter seriously, and therefore, it is necessary to carry out relevant researches on the aerodynamic basis for the brownout. In this paper, the research progress of helicopter brownout is deeply analyzed from four aspects: numerical methods, experimental techniques, formation mechanism, and suppression methods. Investigations demonstrate that the coupled vortex method or CFD method and the Lagrange sand tracking method can realize simulations of the sand cloud profile and the phenomenon of brownout, but the key factors such as the complex sand bed surface, fluctuating turbulence, migration of sand particles, aggregation, and lifting of sand particles need to be concentrated on. The brownout experimental system built with high-speed PIV techniques and high-speed camera can obtain the morphology data of the sand cloud, but it is still necessary to study the simulation methods of the complex sand bed and the measurement techniques of dust spatial concentration, to explore the driving mechanism of sand particles and the evolution mechanism of brownout, and to develop the design methods and technical approaches to effectively weaken brownout.
  • loading
  • [1]
    Acquisition and Technology Programs Task Force (ATP TF). Department of defense aviation safety technologies report[R]. Washington, D. C. : Defense Safety Oversight Council, Office of the Under Secretary of Defense for Personnel and Readiness, 2009: 22-23.
    [2]
    BROWER M. Preventing brownout[J]. Special Operations Technology, 2004, 2(4): 1.
    [3]
    U. S. Department of Defense. Study of rotorcraft surviva-bility, summary briefing[R]. 2009.
    [4]
    ANDERSON L, DOTY P, GRIEGO M, et al. Solutions analysis for helicopter brownout[C]//Proc of the 9th Annual NDIA Systems Engineering Conference. 2006.
    [5]
    MILLUZZO J I, LEISHMAN J G. Vortical sheet behavior in the wake of a rotor in ground effect[J]. AIAA Journal, 2016, 55(1): 24. doi: 10.2514/1.J054498
    [6]
    BETZ A. The ground effect on lifting propellers[R]. NACA-TM-836, 1937.
    [7]
    CHEESEMAN I C, BENNETT W E. The effect of the ground on a helicopter rotor in forward flight[R]. A. R. C. Technical Report, R. & M. No. 3021, 1957.
    [8]
    ROSSOW V J. Effect of ground and/or ceiling planes on thrust of rotors in hover[R]. NASA-TM-86754, 1985.
    [9]
    何承健, 高正. 贴地飞行的旋翼尾迹研究[J]. 航空学报, 1986, 7(4): 325–331. doi: 10.3321/j.issn:1000-6893.1986.04.001

    HE C J, GAO Z. A study of the rotor wake in nap of the earth[J]. Acta Aeronautica et Astronautica Sinica, 1986, 7(4): 325–331. doi: 10.3321/j.issn:1000-6893.1986.04.001
    [10]
    DuWALDT F A. Wakes of lifting propellers (rotors) in-ground-effect[M]. Washington, D. C. : Cornell Aeronautical Laboratory, 1966.
    [11]
    FERGUSON S W. Rotorwash analysis handbook, volume I: Development and analysis[R]. Federal Aviation Admini-stration, Technical Report DOT/FAA/RD-93/31, 1994.
    [12]
    PRESTON J R, TROUTMAN S, KEEN E, et al. Rotorwash operational footprint modeling[R]. U. S. Army RDECOM Technical Report RDMRAF-14-02, 2014. doi: 10.21236/ada607614
    [13]
    WACHSPRESS D A, QUACKENBUSH T R, BOSCHITSCH A H. First-principles free-vortex wake analysis for helicopters and tiltrotors[C]//Proc of the 59th Annual Forum of the American Helicopter Society. 2003.
    [14]
    WACHSPRESS D A, WHITEHOUSE G R, KELLER J D, et al. A high fidelity brownout model for real-time flight simulations and trainers[C]//Proc of the 65th Annual Forum of the American Helicopter Society. 2009: 1281-1304.
    [15]
    KELLER J D, WHITEHOUSE G R, WACHSPRESS D A, et al. A physics-based model of rotorcraft brownout for flight simulation applications[C]//Proc of the 62nd Annual Forum of the American Helicopter Society. 2006.
    [16]
    辛冀, 李攀, 陈仁良. 地面效应中悬停旋翼的自由尾迹计算[J]. 航空学报, 2012, 33(12): 2161–2170.

    XIN J, LI P, CHEN R L. Free-wake analysis of hovering rotor in ground effect[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2161–2170.
    [17]
    D'ANDREA A. Numerical analysis of unsteady vortical flows generated by a rotorcraft operating on ground: a first assessment of helicopter brownout[C]//Proc of the 65th Annual Forum of the American Helicopter Society. 2009.
    [18]
    PHILLIPS C, BROWN R E. Eulerian simulation of the fluid dynamics of helicopter brownout[J]. Journal of Aircraft, 2009, 46(4): 1416–1429. doi: 10.2514/1.41999
    [19]
    GRIFFITHS D A, ANANTHAN S, LEISHMAN J G. Predictions of rotor performance in ground effect using a free-vortex wake model[J]. Journal of the American Helicopter Society, 2005, 50(4): 302–314. doi: 10.4050/1.3092867
    [20]
    SYAL M, LEISHMAN J G. Modeling of bombardment ejections in the rotorcraft brownout problem[J]. AIAA Journal, 2013, 51(4): 849–866. doi: 10.2514/1.J051761
    [21]
    ZHAO J G, HE C J. Physics-based modeling of viscous ground effect for rotorcraft applications[J]. Journal of the American Helicopter Society, 2015, 60(3): 1–13. doi: 10.4050/jahs.60.032006
    [22]
    TAN J F, SUN Y M, BARAKOS G N. Vortex approach for downwash and outwash of tandem rotors in ground effect[J]. Journal of Aircraft, 2018, 55(6): 2491–2509. doi: 10.2514/1.C034740
    [23]
    谭剑锋, 周天熠, 王畅, 等. 旋翼地面效应的气动建模与特性[J]. 航空学报, 2019, 40(6): 106–116.

    TAN J F, ZHOU T Y, WANG C, et al. Aerodynamic model and characteristics of rotor in ground effect[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 106–116.
    [24]
    TAN J F, CAI J G, BARAKOS G N, et al. Computational study on the aerodynamic interference between tandem rotors and nearby obstacles[J]. Journal of Aircraft, 2020, 57(3): 456–468. doi: 10.2514/1.c035629
    [25]
    RYERSON C, HAEHNEL R, KOENIG G, et al. Visibility enhancement in rotorwash clouds[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 263. doi: 10.2514/6.2005-263
    [26]
    WENREN Y H, WALTER J, FAN M, et al. Vorticity confinement and advanced rendering to compute and visualize complex flows[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006. doi: 10.2514/6.2006-945
    [27]
    HAEHNEL R B, MOULTON M A, WENREN W, et al. A model to simulate rotorcraft-induced brownout[C]//Proc of the 64th Annual Forum of the American Helicopter Society. 2008.
    [28]
    WENREN Y, CHITTA S, WACHSPRESS D, et al. A rotorcraft aerodynamics CFD solution method based on vorticity confinement[C]//Proc of the 66th Annual Forum of the American Helicopter Society. 2010.
    [29]
    THOMAS S, LAKSHMINARAYAN V K, KALRA T S, et al. Eulerian-Lagrangian analysis of cloud evolution using CFD coupled with a sediment tracking algorithm[C]//Proc of the 67th Annual Forum of the American Helicopter Society. 2011.
    [30]
    THOMAS S, AMIRAUX M, BAEDER J D. GPU-accelerated FVM-RANS hybrid solver for simulating two-phase flow beneath a hovering rotor[C]//Proc of the 69th Annual Forum of the American Helicopter Society. 2013.
    [31]
    LAKSHMINARAYAN V K, KALRA T S, BAEDER J D. Detailed computational investigation of a hovering microscale rotor in ground effect[J]. AIAA Journal, 2013, 51(4): 893–909. doi: 10.2514/1.J051789
    [32]
    叶靓, 招启军, 徐国华. 基于非结构嵌套网格方法的旋翼地面效应数值模拟[J]. 航空学报, 2009, 30(5): 780–786. doi: 10.3321/j.issn:1000-6893.2009.05.002

    YE L, ZHAO Q J, XU G H. Numerical simulation on flowfield of rotor in ground effect based on unstructured embedded grid method[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 780–786. doi: 10.3321/j.issn:1000-6893.2009.05.002
    [33]
    朱明勇, 招启军, 王博. 基于CFD和混合配平算法的直升机旋翼地面效应模拟[J]. 航空学报, 2016, 37(8): 2539–2551. doi: 10.7527/S1000-6893.2015.0335

    ZHU M Y, ZHAO Q J, WANG B. Simulation of helicopter rotor in ground effect based on CFD method and hybrid trim algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2539–2551. doi: 10.7527/S1000-6893.2015.0335
    [34]
    RAMASAMY M, POTSDAM M, YAMAUCHI G K. Measurements to understand the flow mechanisms contributing to tandem-rotor outwash[C]//Proc of the AHS 71st Annual Forum. 2015: 612-647.
    [35]
    RAMASAMY M, YAMAUCHI G. Using model-scale tandem-rotor measurements in ground effect to understand full-scale CH-47D outwash[J]. Journal of the American Helicopter Society, 2017, 62(1): 1–14. doi: 10.4050/jahs.62.012004
    [36]
    ROVERE F, STEIJL R, BARAKOS G N. CFD Analysis of a micro rotor in ground effect[C]//Proc of the AIAA Scitech 2020 Forum. 2020. doi: 10.2514/6.2020-1793
    [37]
    WHITEHOUSE G R, WACHSPRESS D A, QUACKENBUSH T R, et al. Exploring aerodynamic methods for mitigating brownout[C]//Proc of the 65th Annual Forum of the American Helicopter Society. 2009.
    [38]
    D'ANDREA A, SCORCELLETTI F. Enhanced numerical simulations of helicopter landing maneuvers in brownout conditions[C]//Proc of the 66th Annual Forum of the American Helicopter Society. 2010.
    [39]
    PHILLIPS C, KIM H W, BROWN R E. The flow physics of helicopter brownout[C]//Proc of the 66th Annual Forum of the American Helicopter Society. 2010.
    [40]
    JOHNSON B, LEISHMAN J G, SYDNEY A. Investigation of sediment entrainment in brownout using high-speed particle image velocimetry[C]//Proc of the 65th Annual Forum of the American Helicopter Society. 2009.
    [41]
    SYAL M, GOVINDARAJAN B, LEISHMAN J G. Mesoscale sediment tracking methodology to analyze brownout cloud developments[C]//Proc of the 66th Annual Forum of the American Helicopter Society. 2010.
    [42]
    SYAL M, LEISHMAN J G. Predictions of brownout dust clouds compared to photogrammetry measurements[J]. Journal of the American Helicopter Society, 2013, 58(2): 1–18. doi: 10.4050/jahs.58.022001
    [43]
    GOVINDARAJAN B M, LEISHMAN J G. Predictions of rotor and rotor/airframe configurational effects on brownout dust clouds[J]. Journal of Aircraft, 2015, 53(2): 545–560. doi: 10.2514/1.C033447
    [44]
    SHAO Y, RAUPACH M R, FINDLATER P A. Effect of saltation bombardment on the entrainment of dust by wind[J]. Journal of Geophysical Research Atmospheres, 1993, 98(D7): 12719–12726. doi: 10.1029/93JD00396
    [45]
    GOVINDARAJAN B, LEISHMAN J G, GUMEROV N A. Evaluation of particle clustering algorithms in the prediction of brownout dust clouds[C]//Proc of the 67th Annual Forum of the American Helicopter Society. 2011: 325-347.
    [46]
    HU Q, GUMEROV N A, SYAL M, et al. Toward improved aeromechanics simulation using recent advancements in scientific computing[C]//Proc of the 67th Annual Forum of the American Helicopter Society. 2011: 2105-2119.
    [47]
    TAN J F, GAO J E, BARAKOS G N, et al. Novel approach to helicopter brownout based on vortex and discrete element methods[J]. Aerospace Science and Technology, 2021, 116: 106839. doi: 10.1016/j.ast.2021.106839
    [48]
    谭剑锋, 何龙, 于领军, 等. 基于黏性涡粒子/沙粒DEM的直升机沙盲建模[J]. 航空学报, 2022, 43(8): 351–361. doi: 10.7527/sl000-6893.2021.25536

    TAN J F, HE L, YU L J, et al. Helicopter brownout modeling based on viscous vortex particle and sand particle DEM[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 351–361. doi: 10.7527/sl000-6893.2021.25536
    [49]
    TAN J F, YON T, HE L, et al. Accelerated method of helicopter brownout with particle-particle collisions[J]. Aerospace Science and Technology, 2022, 124: 107511. doi: 10.1016/j.ast.2022.107511
    [50]
    谭剑锋, 韩水, 王畅, 等. 基于DEM的直升机沙盲加速计算方法[J]. 北京航空航天大学学报, 2023, 49(6): 1352–1361. doi: 10.13700/j.bh.1001-5965.2021.0450

    TAN J F, HAN S, WANG C, et al. Accelerated computational method of helicopter brownout based on DEM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1352–1361. doi: 10.13700/j.bh.1001-5965.2021.0450
    [51]
    KUTZ B M, GUNTHER T, RUMPF A, et al. Numerical examination of a model rotor in brownout conditions[C]//Proc of the 70th Annual Forum of the American Helicopter Society. 2014: 2450-2461.
    [52]
    BARAKOS G N, FITZGIBBON T, KUSYUMOV A N, et al. CFD simulation of helicopter rotor flow based on unsteady actuator disk model[J]. Chinese Journal of Aeronautics, 2020, 33(9): 2313–2328. doi: 10.1016/j.cja.2020.03.021
    [53]
    HU J P, XU G H, SHI Y J, et al. A numerical simulation investigation of the influence of rotor wake on sediment particles by computational fluid dynamics coupling discrete element method[J]. Aerospace Science and Technology, 2020, 105: 106046. doi: 10.1016/j.ast.2020.106046
    [54]
    胡健平, 徐国华, 史勇杰, 等. 基于CFD-DEM耦合数值模拟的全尺寸直升机沙盲形成机理[J]. 航空学报, 2020, 41(3): 154–168.

    HU J P, XU G H, SHI Y J, et al. Formation mechanism of brownout in full-scale helicopter based on CFD-DEM couplings numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 154–168.
    [55]
    PORCÙ R, MIGLIO E, PAROLINI N, et al. HPC simulations of brownout: A noninteracting particles dynamic model[J]. The International Journal of High Performance Computing Applications, 2020, 34(3): 267–281. doi: 10.1177/1094342020905971
    [56]
    TAN J F, GE Y Y, ZHANG W G, et al. Numerical study on helicopter brownout with crosswind[J]. Aerospace Science and Technology, 2022, 131: 107965. doi: 10.1016/j.ast.2022.107965
    [57]
    SAIJO T, GANESH B, HUANG A, et al. Development of unsteadiness in a rotor wake in ground effect[C]//Proc of the 21st AIAA Applied Aerodynamics Conference. 2003. doi: 10.2514/6.2003-3519
    [58]
    NATHAN N D. The rotor wake in ground effect and its investigation in a wind tunnel[D]. Scotland, UK: University of Glasgow, 2010.
    [59]
    LEE T, LEISHMAN J G, RAMASAMY M. Fluid dynamics of interacting blade tip vortices with a ground plane[C]//Proc of the 64th Annual Forum of the American Helicopter Society. 2008. doi: 10.4050/jahs.55.022005
    [60]
    BRADLEY J, LEISHMAN J G, SYDNEY A, et al. Investigation of sediment entrainment in brownout using high-speed particle image velocimetry[C]//Proc of the 65th Annual Forum of the American Helicopter Society. 2009.
    [61]
    RODGERS S J. Evaluation of the gust cloud generated by helicopter rotor downwash[R]. U. S. Army Aviation Materiel Laboratories Technical Report, 1968.
    [62]
    NATHAN N D, GREEN R B. Measurements of a rotor flow in ground effect and visualization of the brown-out phenomenon[C]//Proc of the 64th Annual Forum of the American Helicopter Society. 2008.
    [63]
    SYDNEY A, LEISHMAN J G. Measurements of rotor/airframe interactions in ground effect over a sediment bed[C]//Proc of the 69th Annual Forum of the American Helicopter Society. 2013.
    [64]
    SYDNEY A, BAHARANI A, LEISHMAN J G. Under-standing brownout using near-wall dual-phase flow measure-ments[C]//Proc of the 67th Annual Forum of the American Helicopter Society. 2011.
    [65]
    SYDNEY A, LEISHMAN J G. Measurements of the plume-like three-dimensionality of rotor-induced dust fields[C]//Proc of the 70th Annual Forum of the American Helicopter Society. 2014.
    [66]
    COWHERD C, Jr. Sandblaster 2: support of see-through technologies for particulate brownout[R]. Defence Advanced Research Projects Agency (DARPA), Technical Report 110565, 2007.
    [67]
    TANNER P E. Photogrammetric characterization of a brownout cloud[C]//Proc of the 67th Annual Forum of the American Helicopter Society. 2011: 3039-3055.
    [68]
    WONG O D, TANNER P E. Photogrammetric measure-ments of an EH-60L brownout cloud[J]. Journal of the American Helicopter Society, 2016, 61(1): 1–10. doi: 10.4050/jahs.61.012003
    [69]
    SPOLDI S, ENGEL D, FAYNBERGY A, et al. CH-53K control laws: improved safety and performance in the degraded visual environment[C]//Proc of the Vertical Flight Society‘s 76th Annual Forum & Technology Display, 2020. doi: 10.4050/f-0076-2020-16390
    [70]
    WHITEHOUSE G R, WACHSPRESS D A, QUACKENBUSH T R. Aerodynamic design of helicopter rotors for reduced brownout[C]//Proc of the International Powered Lift Conference Proceedings. 2010.
    [71]
    STAFF A H S. British merlin in comba operations: lessons learned[C]//Vertiflite, Fall 2008, American Helicopter Society. 2008.
    [72]
    SLADE K. Sharp new blades improve sea kings[R/OL]. UK Ministry of Defense. 2008. http://www.mod.uk/NR/rdonlyres/C5EA5D7B-D39C-49EE-ADE0-F721525ECA1D/0/desider_04_aug08.pdf.
    [73]
    PRIOT A-E, ALBERY W. Rotary-wing brownout mitiga-tion: technologies and training[R]. North Atlantic Treaty Organisation, RTO-TR-HFM-162, 2012.
    [74]
    HARRINGTON W, BRADDOM S SAVAGE J, et al. 3D-LZ brownout landing solution[C]//Proc of the 66th Annual Forum of the American Helicopter Society. 2010.
    [75]
    SZOBOSZLAY Z P, FUJIZAWA B T, OTT C R, et al. 3D-LZ flight test of 2013: landing an EH-60L helicopter in a brownout Degraded Visual Environment[C]//Proc of the 70th Annual Forum of the American Helicopter Society. 2014. doi: 10.13140/2.1.4978.7525
    [76]
    TURPIN T S, SYKORA B, NEISWANDER G M, et al. Brownout landing aid system technology (BLAST)[C]//Proc of the 66th Annual Forum of the American Helicopter Society. 2010.
    [77]
    NEISWANDER G M. Improving deceleration guidance for rotorcraft brownout landing[C]//Proc of the 67th Annual Forum of the American Helicopter Society. 2011.
    [78]
    ROY G, ROY S, GAO X Y. Helicopter flight test of the Obscurant Penetrating Autosynchronous Lidar (OPAL) in degraded visual environments: part II – see-through capabi-lity assessment[C]//Proc of the AHS 70th Annual Forum. 2014.
    [79]
    SZOBOSZLAY Z, DAVIS B, FUJIZAWA B T, et al. Degraded Visual Environment Mitigation (DVE-M) Program, Yuma 2016 flight trials[C]//Proc of the American Helicopter Society 73rd Annual Forum & Technology Display, 2017.
    [80]
    MILLER J D, GODFROY-COOPER M, SZOBOSZLAY Z P. Degraded Visual Environment Mitigation (DVE-M) Program, bumper Radar obstacle cueing flight trials 2020[C]//Proc of the Vertical Flight Society’s 77th Annual Forum and Technology Display. 2021. doi: 10.4050/F-0077-2021-16747
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(41)

    Article Metrics

    Article views (347) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return