Volume 37 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
ZHOU T B, YU X N, ZHOU G L, et al. Influences of porous media on propagation of compression wave in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 50-58 doi: 10.11729/syltlx20220115
Citation: ZHOU T B, YU X N, ZHOU G L, et al. Influences of porous media on propagation of compression wave in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 50-58 doi: 10.11729/syltlx20220115

Influences of porous media on propagation of compression wave in wind tunnel

doi: 10.11729/syltlx20220115
  • Received Date: 2022-11-01
  • Accepted Date: 2023-04-17
  • Rev Recd Date: 2023-03-31
  • Publish Date: 2023-06-25
  • Generated during the operation of the maglev flight tunnel and reflected at the end of the tunnel, the compression wave may collide with the model at the test section and interfere with the test results. In order to attenuate the influence of compression wave during the tunnel test, the method of laying porous media inside the tunnel pipe is used to reduce the intensity of the compression wave. According to the existing porous media pressure drop equation, the equations describing the compressional wave pressure drop law through porous media in the tunnel pipe were derived. The parameters on which the wave elimination ability of porous media in the equation depend were analyzed by numerical simulation. The results show that the porous media has the same proportion of the pressure drop effect on the compression wave within different strengths. Its wave elimination ability increases with the increase of the compression wave strength, inertial resistance coefficient and porous media thickness. However, with the increase of the inertial resistance coefficient and thickness, a part of the compression wave is reflected instead of passing through the porous media. The strength of the reflected compressional wave also increases with the increase of the inertial resistance coefficient and thickness. Dividing the porous media into multiple layers can reduce the strength of the reflected compressional wave while other parameters of the porous media remain unchanged, so as to improve the overall wave elimination ability of the porous media. Porous media could maintain favourable wave elimination ability under a wide range of ambient pressure changes (0.0001-1 atm).
  • loading
  • [1]
    倪章松, 张军, 符澄, 等. 磁浮飞行风洞试验技术及应用需求分析[J]. 空气动力学学报, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206

    NI Z S, ZHANG J, FU C, et al. Analyses of the test techniques and applications of maglev flight tunnels[J]. Acta Aerodynamica Sinica, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206
    [2]
    张洁, 王雨舸, 韩帅, 等. 空腔结构对高速磁浮隧道压力波的影响研究[J/OL]. 铁道科学与工程学报, 2022, [2023-11-01]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD660Y-aYpXRkSSh0iw1yyNS8A2LVKBJevyMpfU3vm5r6GUfEwqzNHx1r&uniplatform=NZKPT

    ZHANG J, WANG Y G, HAN S, et al. Influence of cavity structure on pressure waves in a high-speed maglev tunnel[J/OL]. Journal of Railway Science and Engineering, 2022, [2023-11-01]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD660Y-aYpXRkSSh0iw1yyNS8A2LVKBJevyMpfU3vm5r6GUfEwqzNHx1r&uniplatform=NZKPTdoi: https://doi.org/10.19713/j.cnki.43-1423/u.T20220986
    [3]
    SAITO S. Optimizing cross-sectional area of tunnel entrance hood for high speed rail[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184: 296–304. doi: 10.1016/j.jweia.2018.11.028
    [4]
    大久保秀彦, 宮地徳蔵, 福田傑. 角錐型緩衝工によるトンネル微気圧波低減効果の検証[C]//流体工学部門講演会講演論文集. 2018.
    [5]
    宮地徳蔵. 緩衝工側面開口部高さ最適化に関する模型実験[C]//日本機械学会流体工部門講演論文集. 2018.
    [6]
    COCHENNEC M, DAVARZANI H, COLOMBANO S, et al. Influence of the fluid-fluid drag on the pressure drop in simulations of two-phase flows through porous flow cells[J]. International Journal of Multiphase Flow, 2022, 149: 103987. doi: 10.1016/j.ijmultiphaseflow.2022.103987
    [7]
    刘春宏, 刘长根, 董娇娇, 等. 基于多孔介质模型的养殖网箱周围流场特性研究[J]. 应用力学学报, 2022, 39(1): 176–185. doi: 10.11776/j.issn.1000-4939.2022.01.022

    LIU C H, LIU C G, DONG J J, et al. Characteristics of flow field around fish cages based on the porous media model[J]. Chinese Journal of Applied Mechanics, 2022, 39(1): 176–185. doi: 10.11776/j.issn.1000-4939.2022.01.022
    [8]
    钟云岭, 郭香华, 张庆明. 冲击波在泡沫铝复合结构中的衰减特性理论分析[J]. 兵工学报, 2014, 35(S2): 322–327.

    ZHONG Y L, GUO X H, ZHANG Q. Study of the attenuation of shock wave in aluminum foam composite structures[J]. Acta Armamentarii, 2014, 35(S2): 322–327.
    [9]
    侯宗宗, 李谨, 梁晨, 等. 不同网孔模型对过滤器内部流场的影响[J]. 化工装备技术, 2022, 43(1): 6–9. doi: 10.16759/j.cnki.issn.1007-7251.2022.02.002

    HOU Z Z, LI J, LIANG C, et al. The influence of different mesh models on the flow field inside the filter[J]. Chemical Equipment Technology, 2022, 43(1): 6–9. doi: 10.16759/j.cnki.issn.1007-7251.2022.02.002
    [10]
    刘洋, 赵立新, 周龙大, 等. 基于多孔跃迁模型的流体阻力压降特性研究[J]. 机床与液压, 2022, 50(7): 17–26. doi: 10.3969/j.issn.1001-3881.2022.07.004

    LIU Y, ZHAO L X, ZHOU L D, et al. Research on the fluid resistance pressure drop characteristics based on porous jump model[J]. Machine Tool & Hydraulics, 2022, 50(7): 17–26. doi: 10.3969/j.issn.1001-3881.2022.07.004
    [11]
    DARCY H P G. Les Fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau, etc[M]. Paris: V. Dalamont, 1856: 47.
    [12]
    FORCHHEIMER P. Wasserbewegung durch boden[J]. Z Ver Deutsch, Ing, 1901, 45: 1782–1788.
    [13]
    ERGUN S. Fluid Flow through packed colums[J]. Journal of Chemical Engineering Progress, 1952, 48(2): 89–94.
    [14]
    BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168–178. doi: 10.1121/1.1908239
    [15]
    华健, 郑广赢, 黄益旺, 等. 层状含气泡非饱和多孔介质的声反射与声透射[J]. 哈尔滨工程大学学报, 2018, 39(6): 1032–1038. doi: 10.11990/jheu.201704006

    HUA J, ZHENG G Y, HUANG Y W, et al. Acoustic reflection and transmission of the layered gassy unsaturated porous medium[J]. Journal of Harbin Engineering University, 2018, 39(6): 1032–1038. doi: 10.11990/jheu.201704006
    [16]
    强光林. 真空管道交通系统激波结构与活塞风特性研究[D]. 长沙: 湖南大学, 2021.

    QIANG G L. Study on shock wave structure and piston wind characteristics of vacuum pipeline traffic system[D]. Changsha: Hunan University, 2021.doi: 10.27135/d.cnki.ghudu.2021.000113
    [17]
    周鹏, 李田, 张继业, 等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086

    ZHOU P, LI T, ZHANG J Y, et al. Research on Shock Wave Trains Generated by the Hyper Train in the Evacuated Tube[J]. Journal of Mechanical Engineering, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086
    [18]
    胡啸, 邓自刚, 张银龙, 等. 真空管道磁浮交通管内波系时空分布特征[J]. 空气动力学学报, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242

    HU X, DENG Z G, ZHANG Y L, et al. Characteristics of spatial and temporal distribution of wave system in evacuated tube maglev transportation[J]. Acta Aerodynamica Sinica, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242
    [19]
    HU X, DENG Z G, ZHANG J W, et al. Aerodynamic behaviors in supersonic evacuated tube transportation with different train nose lengths[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122130. doi: 10.1016/j.ijheatmasstransfer.2021.122130
    [20]
    郭俊飞, 吴立仁. 高速列车隧道压缩波模拟气动试验装置设计[J]. 中国工程机械学报, 2022, 20(2): 167–172. doi: 10.15999/j.cnki.311926.2022.02.006

    GUO J F, WU L R. High-speed train tunnel compression waves simulation pneumatic test device design[J]. Chinese Journal of Construction Machinery, 2022, 20(2): 167–172. doi: 10.15999/j.cnki.311926.2022.02.006
    [21]
    HU X, DENG Z G, ZHANG W H. Effect of cross passage on aerodynamic characteristics of super-high-speed evacuated tube transportation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211: 104562. doi: 10.1016/j.jweia.2021.104562
    [22]
    HU X, DENG Z G, ZHANG J W, et al. Effect of tracks on the flow and heat transfer of supersonic evacuated tube maglev transportation[J]. Journal of Fluids and Structures, 2021, 107: 103413. doi: 10.1016/j.jfluidstructs.2021.103413
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (145) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return