Volume 37 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
MA Z H, JING X L, DU Y C, et al. Mechanism of expanded equal-section inclined hood to reduce initial compression wave by high-speed maglev passing through the tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 100-112 doi: 10.11729/syltlx20220123
Citation: MA Z H, JING X L, DU Y C, et al. Mechanism of expanded equal-section inclined hood to reduce initial compression wave by high-speed maglev passing through the tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 100-112 doi: 10.11729/syltlx20220123

Mechanism of expanded equal-section inclined hood to reduce initial compression wave by high-speed maglev passing through the tunnel

doi: 10.11729/syltlx20220123
  • Received Date: 2022-11-01
  • Accepted Date: 2022-12-08
  • Rev Recd Date: 2022-12-05
  • Available Online: 2023-03-10
  • Publish Date: 2023-02-25
  • The initial compression wave is generated when the high-speed rail vehicle enters the tunnel. The compression wave propagates to the exit of the tunnel at the speed of sound and radiates outward to form a micropressure wave, which brings serious environmental problems. Using the three-dimensional unsteady, compressible flow N–S equation and the SST kω turbulence model, and taking the maglev train with a speed of 600 km/h as the research object, the initial compression wave generated by maglev train entering the tunnel with extended equal-section hood, extended equal-section oblique hood and no hood was simulated. The mitigation effect and mechanism of the inclined end and the oblique angle of the hood on the initial compression wave were analyzed. The following conclusions are mainly drawn: the formation of the maximum pressure gradient of the initial compression wave is directly related to the entrance of the part of the train into the tunnel/hood where the change rate of the cross-sectional area of the train head is the maximum, which corresponds to the maximum change rate of the flow in the tunnel. The maximum gradient of the compression wave can be greatly reduced by setting the extended constant section hood, and the relief rate is 49.92%. Changing the vertical port of the expanded isocross section hood to the positive oblique port can further improve the mitigation rate. When the oblique angle is 10°, 20°, 30° and 39°, the increase of the mitigation rate is 12.93%, 10.32%, 8.18% and 6.28%, respectively. It is suggested that the oblique hood has the most obvious effect on the peak pressure gradient of the initial compression wave when the oblique angle is 10°, and the total relief rate is 62.85%. In this paper, the coupling analysis method of the change rate of the cross section area of the head, the air flow rate and the compression wave at the observation point, and the mutual mapping relationship between the head shape and the air flow rate, which affect the maximum pressure gradient of the initial compression wave, can reasonably explain the mechanism of the hood at the entrance to the cave to reduce the initial compression wave. It provides a new method for further optimization of the train head shape and design of different types of hood and analysis of aerodynamic effects.
  • loading
  • [1]
    TAKAYAMA K, SASOH A, ONODERA O, et al. Experi-mental investigation on tunnel sonic boom[J]. Shock Waves, 1995, 5(3): 127–138. doi: 10.1007/BF01435520
    [2]
    王英学, 高波, 赵文成. 车隧气动效应原理与方法[M]. 北京: 中国铁道出版社, 2017.
    [3]
    SAITO S. Optimizing cross-sectional area of tunnel entrance hood for high speed rail[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184: 296–304. doi: 10.1016/j.jweia.2018.11.028
    [4]
    SAITO S, FUKUDA T. Design of a tunnel entrance hood for high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104375. doi: 10.1016/j.jweia.2020.104375
    [5]
    MIYACHI T, FUKUDA T. Model experiments on area optimization of multiple openings of tunnel hoods to reduce micro-pressure waves[J]. Tunnelling and Underground Space Technology, 2021, 115: 103996. doi: 10.1016/j.tust.2021.103996
    [6]
    HEINE D, EHRENFRIED K, HEINE G, et al. Experimental and theoretical study of the pressure wave generation in railway tunnels with vented tunnel portals[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 290–300. doi: 10.1016/j.jweia.2018.03.020
    [7]
    UYSTEPRUYST D, WILLIAM-LOUIS M, MONNOYER F. 3D numerical design of tunnel hood[J]. Tunnelling and Underground Space Technology, 2013, 38: 517–525. doi: 10.1016/j.tust.2013.08.008
    [8]
    KIM D H, CHEOL S Y, IYER R S, et al. A newly designed entrance hood to reduce the micro pressure wave emitted from the exit of high-speed railway tunnel[J]. Tunnelling and Underground Space Technology, 2021, 108: 103728. doi: 10.1016/j.tust.2020.103728
    [9]
    XIANG X T, XUE L P, WANG B L. Aerodynamic effects of inclined portals on the initial compression wave generated by a high-speed train entering a tunnel[J]. Journal of Fluids Engineering, 2015, 137(12): 121104. doi: 10.1115/1.4030843
    [10]
    LI W H, LIU T H, HUO X S, et al. Influence of the enlarged portal length on pressure waves in railway tunnels with cross-section expansion[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 10–22. doi: 10.1016/j.jweia.2019.03.031
    [11]
    王田天, 胡冲, 龚彦峰, 等. 扩大斜切式缓冲结构对时速400 km铁路隧道口微气压波缓解研究[J]. 空气动力学学报, 2021, 39(5): 151–161. doi: 10.7638/kqdlxxb-2021.0101

    WANG T T, HU C, GONG Y F, et al. Mitigation of micro-pressure wave at 400 km/h railway tunnel exit by oblique enlarged tunnel-hood[J]. Acta Aerodynamica Sinica, 2021, 39(5): 151–161. doi: 10.7638/kqdlxxb-2021.0101
    [12]
    王维洲, 钟登朝, 胖涛, 等. 400km/h高速铁路隧道洞口等截面无开孔扩大型缓冲结构气动效应分析[J]. 高速铁路技术, 2021, 12(5): 57–61.

    WANG W Z, ZHONG D C, PAN T, et al. Aerodynamic effect analysis of enlarged buffer structure without opening at uniform cross-section of tunnel portals of 400km/h high-speed railway[J]. High Speed Railway Technology, 2021, 12(5): 57–61.
    [13]
    山崎幹男, 若原敏裕, 永長隆昭, et al. 超高速鉄道トンネル内に生じる圧力変動評価[C]//土木学会論文集. 2003, 738(64): 171-189.
    [14]
    本田敦, 高橋和也, 野澤剛二郎, et al. 超高速鉄道トンネルにおける微気圧波の評価および緩衝工の提案[C]//土木学会論文集 A1(構造·地震工学). 2015, 71(3): 327-340.
    [15]
    本田敦, 高橋和也, 野澤剛二郎, et al. 超高速鉄道トンネルにおける入口側円型緩衝工の微気圧波低減効果[C]//土木学会論文集 A1(構造·地震工学). 2015, 71(1): 128-138.
    [16]
    梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120–131. doi: 10.19818/j.cnki.1671-1637.2020.01.009

    MEI Y G, ZHAO H B, CHEN D W, et al. Numerical simulation of initial compression wave characteristics of 600 km·h–1 maglev train entering tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 120–131. doi: 10.19818/j.cnki.1671-1637.2020.01.009
    [17]
    梅元贵, 李绵辉, 胡啸, 等. 时速600公里磁浮列车隧道初始压缩波洞内传播特征和洞口微气压波特征[J]. 交通运输工程学报, 2021, 21(4): 150–162. doi: 10.19818/j.cnki.1671-1637.2021.04.011

    MEI Y G, LI M H, HU X, et al. Propagation characteristics of initial compression wave in cave and portal micro-pressure waves characteristics when 600 km·h–1 maglev train entering tunnels[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 150–162. doi: 10.19818/j.cnki.1671-1637.2021.04.011
    [18]
    张洁, 王雨舸, 韩帅, 等. 缓冲结构长度对600 km/h磁浮列车通过隧道时的压力波特性影响分析[J]. 中南大学学报(自然科学版), 2022, 53(5): 1668–1678.

    ZHANG J, WANG Y G, HAN S, et al. Influence of hood length on pressure wave characteristics induced by 600 km/h maglev train passing through tunnel[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1668–1678.
    [19]
    张洁, 王雨舸, 韩帅, 等. 空腔结构对高速磁浮隧道压力波的影响研究[J/OL]. [2022-10-30]. 铁道科学与工程学报.

    ZHANG J, WANG Y G, HAN S, et al. Influence of cavity structure on pressure waves in a high-speed maglev tunnel[J/OL]. [2022-10-30]. Journal of Railway Science and Engineering. doi: 10.19713/j.cnki.43-1423/u. T20220986.
    [20]
    MASHIMO S, NAKATSU E, AOKI T, et al. Entry compression wave generated by a high-speed train entering a tunnel[J]. TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B, 1995, 61(590): 3720–3727. doi: 10.1299/kikaib.61.3720
    [21]
    国家铁路局. 铁路应用空气动力学 第4部分: 列车空气动力学性能数值仿真规范: TB/T 3503.4—2018[S]. 北京: 中国铁道出版社.
    [22]
    KU Y C, RHO J H, YUN S H, et al. Optimal cross-sectional area distribution of a high-speed train nose to minimize the tunnel micro-pressure wave[J]. Structural and Multidiscipli-nary Optimization, 2010, 42(6): 965–976. doi: 10.1007/s00158-010-0550-6
    [23]
    胡啸. 开口型缓冲结构减缓高速磁浮列车驶入隧道时洞内外压力波动特性研究[D]. 兰州: 兰州交通大学, 2019.

    HU X. Study on the alleviation of hood with multiple windows on pressure fluctuation characteristics inside and outside the tunnel induced by high speed maglev train passing through the tunnel[D]. Lanzhou: Lanzhou Jiatong University, 2019. doi: 10.27205/d.cnki.gltec.2019.000506
    [24]
    YANG M Z, ZHONG S, ZHANG L, et al. 600 km/h moving model rig for high-speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 227: 105063. doi: 10.1016/j.jweia.2022.105063
    [25]
    LU Y B, WANG T T, YANG M Z, et al. The influence of reduced cross-section on pressure transients from high-speed trains intersecting in a tunnel[J]. Journal of Wind Enginee-ring and Industrial Aerodynamics, 2020, 201: 104161. doi: 10.1016/j.jweia.2020.104161
    [26]
    CD-ADAPCO GROUP. Methodology STAR–CCM+ version 17.02 user guide[M]. UK: Computational Dynamics Limited, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views (5675) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return