Volume 37 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
GAO X L, WANG C, FU C, et al. Simulation evaluation of aero-structure interaction for moving model in maglev flight tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 59-68 doi: 10.11729/syltlx20220127
Citation: GAO X L, WANG C, FU C, et al. Simulation evaluation of aero-structure interaction for moving model in maglev flight tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 59-68 doi: 10.11729/syltlx20220127

Simulation evaluation of aero-structure interaction for moving model in maglev flight tunnel

doi: 10.11729/syltlx20220127
  • Received Date: 2022-11-09
  • Accepted Date: 2023-06-01
  • Rev Recd Date: 2023-05-31
  • Publish Date: 2023-06-25
  • The maglev flight tunnel is a novel concept aerodynamics test facility, in which the high speed translation of the moving model in the long straight closed tunnel would induce extremely complicated aerodynamic characteristics. The motion of model’s fast acceleration, deceleration and constant speed moving have strong interference to the surrounding fluid field, causing wave propagation problems and the aero-structure single way coupling problems. The unsteady characteristics originated from the high speed moving of the model in the maglev flight tunnel are investigated and evaluated from the view of aero-structure coupling. Based on the new CE/SE method, the 3D surrounding compressible fluid of the moving model in tunnel is solved, and the aerodynamic parameters variations, wave propagation characteristics and the pressure distribution in the tunnel are obtained. Simulation design analysis of parameters for porous medium wave absorbing materials is conducted, which could provide a support for the key technical problems like wave absorbing construction design of the maglev flight tunnel.
  • loading
  • [1]
    刘政崇. 风洞结构设计[M]. 北京: 中国宇航出版社, 2005.
    [2]
    战培国. 未来的新型无风低速风洞[J]. 流体力学实验与测量, 2000, 14(4): 50.
    [3]
    王乐卿, 高广军, 吴雨薇, 等. 高速列车车身风阻制动板气动外形设计[J]. 中南大学学报(自然科学版), 2022, 53(5): 1655–1667.

    WANG Y Q, GAO G J, WU Y W, et al. Aerodynamic shape design of aerodynamic braking plates installed on a high-speed train body[J]. Journal of Central South University(Science and Technology), 2022, 53(5): 1655–1667.
    [4]
    李一凡, 李田, 张继业, 等. 导流装置对高速磁浮列车气动特性的影响[J]. 实验流体力学, 2023, 37(1): 91–99. doi: 10.11729/syltlx20220109

    LI Y F, LI T, ZHANG J Y, et al. Effect of deflector devices on the aerodynamic characteristics of high-speed maglev trains[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 91–99. doi: 10.11729/syltlx20220109
    [5]
    倪章松, 张军, 符澄, 等. 磁浮飞行风洞试验技术及应用需求分析[J]. 空气动力学学报, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206

    NI Z S, ZHANG J, FU C, et al. Analyses of the test techniques and applications of maglev flight tunnels[J]. Acta Aerodynamica Sinica, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206
    [6]
    刘加利, 张继业, 张卫华. 真空管道高速列车气动特性分析[J]. 机械工程学报, 2013, 49(22): 137–143. doi: 10.3901/JME.2013.22.137

    LIU J L, ZHANG J Y, ZHANG W H. Analysis of aerodynamic characteristics of high-speed trains in the evacuated tube[J]. Journal of Mechanical Engineering, 2013, 49(22): 137–143. doi: 10.3901/JME.2013.22.137
    [7]
    田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1–9. doi: 10.3321/j.issn:1671-1637.2006.01.001

    TIAN H Q. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1–9. doi: 10.3321/j.issn:1671-1637.2006.01.001
    [8]
    张晓涵, 李田, 张继业, 等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182

    ZHANG X H, LI T, ZHANG J Y, et al. Aerodynamic choked flow and shock wave phenomena of subsonic evacuated tube train[J]. Journal of Mechanical Engineering, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182
    [9]
    NAKATA D, YASUDA K, HORIO S, et al. A fundamental study on the hybrid rocket clustering for the rocket sled propulsion system[C]//Proc of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference. 2016. doi: 10.2514/6.2016-4868
    [10]
    LOFFTUS D, LUND T, ROTE D. High-lift flight tunnel phase ii report[R]. NASA/CR-2000-210653, 2000.
    [11]
    周勇为, 常熹钰, 易仕和. 低湍流度磁悬浮风洞的气动和结构设计[J]. 流体力学实验与测量, 2001, 15(4): 1–6.

    ZHOU Y W, CHANG X Y, YI S. The aerodynamic and structural design of low turbulence intensity of MSWT[J]. Experiments and Measurements in Fluid Mechanics, 2001, 15(4): 1–6.
    [12]
    CHANG S C. The method of space-time conservation element and solution element—a new approach for solving the navier-stokes and Euler equations[J]. Journal of Computational Physics, 1995, 119(2): 295–324. doi: 10.1006/jcph.1995.1137
    [13]
    ZHANG Z C, YU S T J, CHANG S C. A space-time conservation element and solution element method for solving the two- and three-dimensional unsteady Euler equations using quadrilateral and hexahedral meshes[J]. Journal of Computational Physics, 2002, 175(1): 168–199. doi: 10.1006/jcph.2001.6934
    [14]
    黄婷婷. 时空守恒元解元方法及其在气动噪声计算中的应用[D]. 南京: 南京航空航天大学, 2011.

    HUANG T T. Space-time conservation element solution method and its application in aerodynamic noise calculation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
    [15]
    纪珍. 计算磁流体力学中几种数值方法比较研究[D]. 北京: 中国科学院空间科学与应用研究中心, 2011.

    JI Z. Comparative study on several numerical methods in computational magnetohydrodynamics[D]. Beijing: Center for Space Science and Applied Research, Chinese academy of science, 2011.
    [16]
    刘凯欣, 王景焘, 王刚, 等. 时-空守恒元解元(CE/SE)方法综述[J]. 力学进展, 2011, 41(4): 447–461. doi: 10.6052/1000-0992-2011-4-lxjzJ2010-136

    LIU K X, WANG J T, WANG G, et al. A review on the CE/SE method[J]. Advances in Mechanics, 2011, 41(4): 447–461. doi: 10.6052/1000-0992-2011-4-lxjzJ2010-136
    [17]
    翁春生, TAY P G. CE/SE方法在非定常爆轰计算中的应用[J]. 空气动力学学报, 2003, 21(3): 301–310. doi: 10.3969/j.issn.0258-1825.2003.03.007

    WENG C S, TAY P G. Apply the CE/SE method to the simulation of unsteady detonation[J]. Acta Aerodynamica Sinica, 2003, 21(3): 301–310. doi: 10.3969/j.issn.0258-1825.2003.03.007
    [18]
    张增产, 沈孟育. 改进的时空守恒元和解元方法[J]. 清华大学学报(自然科学版), 1997, 37(8): 65–68.

    ZHANG Z C, SHEN M. Improved scheme of space time conservation element and solution element[J]. Journal of Tsinghua University (Science and Technology), 1997, 37(8): 65–68.
    [19]
    沈洋, 刘凯欣, 陈璞, 等. 采用改进的CE/SE方法模拟方管中氢氧爆轰波的稳定传播结构[J]. 航空学报, 2019, 40(5): 68–80.

    SHEN Y, LIU K X, CHEN P, et al. Simulations of stable structure in oxy-hydrogen detonation propagation in square ducts using an improved CE/SE scheme[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 68–80.
    [20]
    高兴龙. 物伞流固耦合及多体系统动力学研究[D]. 长沙: 国防科学技术大学, 2016.

    GAO X L. Study on fluid-structure coupling of parachute and dynamics of multi-body system[D]. Changsha: National University of Defense Technology, 2016 .
    [21]
    FU C, GAO X L, SUN Y Q, et al. Numerical simulation of unsteady fluid parameters for maglev flight wind tunnel design[J]. Aerospace, 2022, 10(1): 34. doi: 10.3390/aerospace10010034
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(2)

    Article Metrics

    Article views (198) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return