Volume 37 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
CHEN D W, LIU J L, YAO S B, et al. Preliminary study on system configuration of ultra high-speed maglev train aerodynamic problem in the low vacuum tube[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 19-26 doi: 10.11729/syltlx20220136
Citation: CHEN D W, LIU J L, YAO S B, et al. Preliminary study on system configuration of ultra high-speed maglev train aerodynamic problem in the low vacuum tube[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 19-26 doi: 10.11729/syltlx20220136

Preliminary study on system configuration of ultra high-speed maglev train aerodynamic problem in the low vacuum tube

doi: 10.11729/syltlx20220136
  • Received Date: 2022-11-18
  • Accepted Date: 2023-02-22
  • Rev Recd Date: 2023-01-11
  • Publish Date: 2023-06-25
  • The low vacuum tube ultra high-speed maglev system is the next generation of the ultra high-speed ground transportation system, which combines the low vacuum tube and high-speed maglev technologies, and thus can effectively reduce the aerodynamic resistance and aerodynamic noise of the train running at ultra high-speed, to achieve a running speed of 800~1000 km/h, or even more than 1000 km/h. In the present paper, the aerodynamic numerical simulation method of the ultra high-speed maglev train in the low vacuum tube was discussed. The influence of the tube pressure, tube area, and train speed on the aerodynamic performance of the ultra high-speed maglev train in the low vacuum tube, such as the aerodynamic drag, aerodynamic lift, aerodynamic noise source, tube intersection pressure wave, and heating equipment temperature, was studied. And the typical scenarios of the low vacuum tube ultra high-speed maglev system were preliminarily discussed in engineering. The research shows that, when the train speed is 600 km/h, the tube pressure of 1.0 atm–tube area of 100 m2, and the tube pressure of 0.3 atm–tube area of 40 m2, have engineering feasibility; the tube pressure of 0.3 atm–tube area of 100 m2 has the problem of equipment heat dissipation, and the engineering feasibility has certain challenges. When the train speed is 1000 km/h, the equipment head dissipation under the tube pressure of 0.3 atm–tube pressure of 100 m2 is significant, and the engineering feasibility is challenged. If the tube pressure is further reduced, the design difficulty of equipment heat dissipation and airtight strength would be further increased.
  • loading
  • [1]
    邓自刚, 张勇, 王博, 等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204

    DENG Z G, ZHANG Y, WANG B, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204
    [2]
    沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报, 2005, 40(2): 133–137. doi: 10.3969/j.issn.0258-2724.2005.02.001

    SHEN Z Y. On developing high-speed evacuated tube transportation in China[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 133–137. doi: 10.3969/j.issn.0258-2724.2005.02.001
    [3]
    DENG Z G, ZHANG W H, ZHENG J, et al. A high-temperature superconducting maglev-evacuated tube transport (HTS maglev-ETT) test system[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(6): 1–8. doi: 10.1109/TASC.2017.2716842
    [4]
    周晓, 张殿业, 张耀平. 真空管道中阻塞比对列车空气阻力影响的数值研究[J]. 真空科学与技术学报, 2008, 28(6): 535–538. doi: 10.3969/j.issn.1672-7126.2007.01.015

    ZHOU X, ZHANG D Y, ZHANG Y P. Numerical simulation of blockage rate and aerodynamic drag of high-speed train in evacuated tube transportation[J]. Chinese Journal of Vacuum Science and Technology, 2008, 28(6): 535–538. doi: 10.3969/j.issn.1672-7126.2007.01.015
    [5]
    周晓. 真空管道运输高速列车空气阻力数值仿真[D]. 成都: 西南交通大学, 2008.

    ZHOU X. Numerical simulation on the aerodynamic drag of high-speed train of evacuated tube transportation system [D]. Chengdu: Southwest Jiaotong University, 2008.
    [6]
    KIM T K, KIM K H, KWON H B. Aerodynamic characteristics of a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(12): 1187–1196. doi: 10.1016/j.jweia.2011.09.001
    [7]
    刘加利, 张继业, 张卫华. 真空管道高速列车气动特性分析[J]. 机械工程学报, 2013, 49(22): 137–143. doi: 10.3901/JME.2013.22.137

    LIU J L, ZHANG J Y, ZHANG W H. Analysis of aerodynamic characteristics of high-speed trains in the evacuated tube[J]. Journal of Mechanical Engineering, 2013, 49(22): 137–143. doi: 10.3901/JME.2013.22.137
    [8]
    刘加利, 张继业, 张卫华. 真空管道高速列车气动阻力及系统参数设计[J]. 真空科学与技术学报, 2014, 34(1): 10–15. doi: 10.3969/j.issn.1672-7126.2014.01.03

    LIU J L, ZHANG J Y, ZHANG W. Impacts of pressure, blockage-ratio and speed on aerodynamic drag-force of high-speed trains[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(1): 10–15. doi: 10.3969/j.issn.1672-7126.2014.01.03
    [9]
    刘加利, 张继业, 张卫华. 真空管道高速列车气动噪声源特性分析[J]. 真空科学与技术学报, 2013, 33(10): 1026–1031. doi: 10.3969/j.issn.1672-7126.2013.10.14

    LIU J L, ZHANG J Y, ZHANG W. Simulation of noise source for high speed train in evacuated tube[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(10): 1026–1031. doi: 10.3969/j.issn.1672-7126.2013.10.14
    [10]
    陈大伟, 郭迪龙. 低真空管道磁浮列车气动特性[J]. 力学研究, 2019(2): 109–117. doi: 10.12677/ijm.2019.82013

    CHEN D W, GUO D. Aerodynamic characteristics of maglev train on low evacuated tube[J]. International Journal of Mechanics Research, 2019(2): 109–117. doi: 10.12677/ijm.2019.82013
    [11]
    黄尊地, 梁习锋, 常宁. 真空管道交通列车外流场仿真算法分析[J]. 工程热物理学报, 2018, 39(6): 1244–1250.

    HUANG Z D, LIANG X F, CHANG N. Analysis on simulation algorithm for train outflow field of vacuum pipeline traffic[J]. Journal of Engineering Thermophysics, 2018, 39(6): 1244–1250.
    [12]
    OH J S, KANG T, HAM S, et al. Numerical analysis of aerodynamic characteristics of hyperloop system[J]. Energies, 2019, 12(3): 518. doi: 10.3390/en12030518
    [13]
    BRAUN J, SOUSA J, PEKARDAN C. Aerodynamic design and analysis of the hyperloop[J]. AIAA Journal, 2017, 55(12): 4053–4060. doi: 10.2514/1.J055634
    [14]
    VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics: the finite volume method[M]. 2nd ed. Harlow, England: Pearson Education Ltd. , 2007.
    [15]
    丁叁叁. 时速600 公里高速磁浮交通系统[M]. 上海: 上海科学技术出版社, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (212) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return