Volume 37 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
ZHAO Y F, WU D, WANG J, et al. Experimental study on Rayleigh–Bénard convection during supercritical phase transition of carbon dioxide[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 101-110 doi: 10.11729/syltlx20230003
Citation: ZHAO Y F, WU D, WANG J, et al. Experimental study on Rayleigh–Bénard convection during supercritical phase transition of carbon dioxide[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 101-110 doi: 10.11729/syltlx20230003

Experimental study on Rayleigh–Bénard convection during supercritical phase transition of carbon dioxide

doi: 10.11729/syltlx20230003
  • Received Date: 2023-01-05
  • Accepted Date: 2023-03-06
  • Rev Recd Date: 2023-02-21
  • Available Online: 2023-05-17
  • Publish Date: 2023-10-30
  • Supercritical fluid is a kind of special fluid under extreme conditions (temperature and pressure are above the critical point). The Rayleigh–Benard (RB) convection of supercritical fluid driven by buoyancy is a new nonlinear thermal convection system. Its buoyancy does not conform to the Boussinesq approximation. Under the action of temperature difference, the physical properties of RB fluid show severe distortion near the critical point, accompanied by abundant flow and phase transition coupling processes. In this experiment, a transparent sapphire pressure vessel capable of carrying supercritical carbon dioxide (SCO2) was designed to establish RB convection of supercritical fluid under the effect of vertical temperature gradient. The flow structure and supercritical phase transition process under different temperature differences were observed. The velocity field of “atomized” droplets was calculated by image cross-correlation algorithm. In the experiment, platinum resistance temperature measurement was used to accurately control the temperature of the upper and lower ends of the container, and the evolution of various flow modes and velocity fields in the linear cooling process was studied. In the linear cooling process, SCO2 goes through three typical processes: supercritical flow, transcritical flow and gas liquid two-phase flow. The strong coupling of the transcritical phase transition with buoyancy convection results in the heterogeneous unsteady flow of supercritical carbon dioxide RB convection. It shows that the supercritical RB convection is extremely sensitive to temperature difference, and the larger the temperature difference is, the more intense the convection in the supercritical domain is. With the decrease of temperature, the atomized droplets condense to form abundant structure of multi-layer flows, which finally turn to the two-phase flow.
  • loading
  • [1]
    张庆富, 杨文芳. 超临界CO2的应用技术及发展现状[J]. 毛纺科技, 2011, 39(8): 48–54. doi: 10.19333/j.mfkj.2011.08.014

    ZHANG Q F, YANG W F. Development and application of supercritical CO2[J]. Wool Textile Journal, 2011, 39(8): 48–54. doi: 10.19333/j.mfkj.2011.08.014
    [2]
    李淑芬, 吴希文, 侯彩霞, 等. 超临界流体技术开发应用现状和前景展望[J]. 现代化工, 2007, 27(2): 1–7, 9. doi: 10.16606/j.cnki.issn0253-4320.2007.02.001

    LI S F, WU X W, HOU C X, et al. Supercritical fluid technology and application[J]. Modern Chemical Industry, 2007, 27(2): 1–7, 9. doi: 10.16606/j.cnki.issn0253-4320.2007.02.001
    [3]
    王军辉, 郭鹏程, 颜建国, 等. 水平小圆管内超临界二氧化碳对流传热特性的试验研究[J]. 西安理工大学学报, 2018, 34(3): 272–277. doi: 10.19322/j.cnki.issn.1006-4710.2018.03.004

    WANG J H, GUO P C, YAN J G, et al. Experimental studies on convection heat transfer of supercritical carbon dioxide in a horizontal circular mini-tube[J]. Journal of Xi’an University of Technology, 2018, 34(3): 272–277. doi: 10.19322/j.cnki.issn.1006-4710.2018.03.004
    [4]
    杨俊兰, 马一太, 曾宪阳, 等. 超临界压力下CO2流体的性质研究[J]. 流体机械, 2008, 36(1): 53–57,13. doi: 10.3969/j.issn.1005-0329.2008.01.014

    YANG J L, MA Y T, ZENG X Y, et al. Study on the properties of CO2 fluid at supercritical pressure[J]. Fluid Machinery, 2008, 36(1): 53–57,13. doi: 10.3969/j.issn.1005-0329.2008.01.014
    [5]
    杨俊兰, 马一太, 李敏霞. 超临界CO2流体及其换热特性分析[J]. 流体机械, 2013, 41(5): 66–71. doi: 10.3969/j.issn.1005-0329.2013.05.015

    YANG J L, MA Y T, LI M X. Analysis of supercritical CO2 fluid and the heat transfer performance[J]. Fluid Machinery, 2013, 41(5): 66–71. doi: 10.3969/j.issn.1005-0329.2013.05.015
    [6]
    刘旻昀, 黄彦平, 唐佳, 等. 超临界流体物性畸变特性的多尺度研究[J]. 原子能科学技术, 2021, 55(11): 1921–1929. doi: 10.7538/yzk.2021.youxian.0825

    LIU M Y, HUANG Y P, TANG J, et al. Multi-scale study on property distortion mechanism of supercritical fluid[J]. Atomic Energy Science and Technology, 2021, 55(11): 1921–1929. doi: 10.7538/yzk.2021.youxian.0825
    [7]
    邢凯翔. 超临界二氧化碳布雷顿循环近临界特性研究[D]. 杭州: 浙江大学, 2021.

    XING K X. Study on near-critical characteristics of supercritical carbon dioxide Brayton cycle[D]. Hangzhou: Zhejiang University, 2021.
    [8]
    杨富方, 刘航滔, 杨震, 等. 超临界二氧化碳循环工质热物性研究进展[J]. 热力发电, 2020, 49(10): 21–29. doi: 10.19666/j.rlfd.202006163

    YANG F F, LIU H T, YANG Z, et al. Thermophysical properties of working fluid of supercritical carbon dioxide cycle: research progress[J]. Thermal Power Generation, 2020, 49(10): 21–29. doi: 10.19666/j.rlfd.202006163
    [9]
    王鹏飞, 张尧立, 谢榕顺, 等. 超临界二氧化碳的自然循环流动特性[J]. 厦门大学学报(自然科学版), 2022, 61(1): 80–86. doi: 10.6043/j.issn.0438-0479.202012004

    WANG P F, ZHANG Y L, XIE R S, et al. Characteristics of natural circulation flow of supercritical carbon dioxide[J]. Journal of Xiamen University (Natural Science), 2022, 61(1): 80–86. doi: 10.6043/j.issn.0438-0479.202012004
    [10]
    杨凤叶, 王珂, 刘彤, 等. 竖直管内超临界二氧化碳局部对流换热研究[J]. 压力容器, 2013, 30(3): 1–4,14. doi: 10.3969/j.issn.1001-4837.2013.03.001

    YANG F Y, WANG K, LIU T, et al. Research of local convection heat transfer of CO2 at supercritical pressures in a vertical tube[J]. Pressure Vessel Technology, 2013, 30(3): 1–4,14. doi: 10.3969/j.issn.1001-4837.2013.03.001
    [11]
    淮秀兰, SHIGERU Koyama. 微通道内超临界二氧化碳的压降与传热特性[J]. 工程热物理学报, 2004, 25(5): 843–845. doi: 10.3321/j.issn:0253-231X.2004.05.036

    HUAI X L, SHIGERU K. Heat transfer and pressure drop of supercritical carbon dioxide in multi-port channels[J]. Journal of Engineering Thermophysics, 2004, 25(5): 843–845. doi: 10.3321/j.issn:0253-231X.2004.05.036
    [12]
    周全, 夏克青. Rayleigh–Bénard湍流热对流研究的进展、现状及展望[J]. 力学进展, 2012, 42(3): 231–251.

    ZHOU Q, XIA K Q. Progress, present situation and prospect of Rayleigh–Bénard turbulent heat convection research[J]. Advances in Mechanics, 2012, 42(3): 231–251.
    [13]
    郗恒东, 孙超, 夏克青. 湍流热对流中的动力学和传热研究[J]. 物理, 2006, 35(4): 265–268. doi: 10.3321/j.issn:0379-4148.2006.04.002

    XI H D, SUN C, XIA K Q. Flow dynamics and heat transport in turbulent thermal convection[J]. Physics, 2006, 35(4): 265–268. doi: 10.3321/j.issn:0379-4148.2006.04.002
    [14]
    周全, 孙超, 郗恒东, 等. 湍流热对流中的若干问题[J]. 物理, 2007, 36(9): 657–663. doi: 10.3321/j.issn:0379-4148.2007.09.001

    ZHOU Q, SUN C, XI H D, et al. Various issues in turbulent thermal convection[J]. Physics, 2007, 36(9): 657–663. doi: 10.3321/j.issn:0379-4148.2007.09.001
    [15]
    XI H D, XIA K Q. Flow mode transitions in turbulent thermal convection[J]. Physics of Fluids, 2008, 20(5): 055104. doi: 10.1063/1.2920444
    [16]
    陈鑫, 郗恒东. 瑞利–伯纳德热湍流中的多湍流态现象[J]. 空气动力学学报, 2022, 40(2): 147–155. doi: 10.7638/kqdlxxb-2022.0002

    CHEN X, XI H D. Multiple flow states in turbulent Rayleigh–Bénard convection[J]. Acta Aerodynamica Sinica, 2022, 40(2): 147–155. doi: 10.7638/kqdlxxb-2022.0002
    [17]
    ACCARY G, BONTOUX P, ZAPPOLI B. Turbulent Rayleigh–Bénard convection in a near-critical fluid by three-dimensional direct numerical simulation[J]. Journal of Fluid Mechanics, 2009, 619: 127–145. doi: 10.1017/s0022112008004175
    [18]
    VALORI V, ELSINGA G E, ROHDE M, et al. Particle image velocimetry measurements of a thermally convective supercritical fluid[J]. Experiments in Fluids, 2019, 60(9): 1–14. doi: 10.1007/s00348-019-2789-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (280) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return