Volume 38 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
LIAN J X, CHEN W J, QIAO W Y, et al. Experimental study on the directivity and noise reduction of the blade leading-edge noise using Inverse Method SODIX based on microphone array[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 67-78 doi: 10.11729/syltlx20230020
Citation: LIAN J X, CHEN W J, QIAO W Y, et al. Experimental study on the directivity and noise reduction of the blade leading-edge noise using Inverse Method SODIX based on microphone array[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 67-78 doi: 10.11729/syltlx20230020

Experimental study on the directivity and noise reduction of the blade leading-edge noise using Inverse Method SODIX based on microphone array

doi: 10.11729/syltlx20230020
  • Received Date: 2023-02-27
  • Accepted Date: 2023-10-13
  • Rev Recd Date: 2023-09-28
  • Available Online: 2023-11-16
  • Publish Date: 2024-02-25
  • Taking the NACA65(12)–10 blade as the object, a linear microphone array based on the SODIX (SOurce DIrectivity modeling in the cross-spectral matriX) method is used to study the leading-edge (LE) noise directivity of the baseline and the effect of the wavy LE on the LE noise directivity. First, a SODIX data processing program was developed, and the program was validated by numerical simulation. The validation results show that the data processing program has a good accuracy with an error less than 0.26 dB. Then, a linear array with 31 microphones is designed to identify the LE noise directivity of the baseline and the wavy LE blade experimentally in a semi-anechoic chamber. Within the measured degree range of 40°–142°, the directivity of LE noise shows a characteristic of typical dipole sound sources with a peak occurs at 130°. Besides, the higher the frequency is, the more obvious of the ‘lobe’ distribution of the LE noise directivity is. Further analysis shows that the wavy LE with various amplitudes and wavelengths especially with larger amplitudes can reduce LE noise in measured angle ranges especially among 90°–120°. And the maximum value is 7.71 dB for A30W20.
  • loading
  • [1]
    POWELL A. On the aerodynamic noise of a rigid flat plate moving at zero incidence[J]. The Journal of the Acoustical Society of America, 1959, 31(12): 1649–1653. doi: 10.1121/1.1907674
    [2]
    CRIGHTON D G, LEPPINGTON F G. Scattering of aerodynamic noise by a semi-infinite compliant plate[J]. Journal of Fluid Mechanics, 1970, 43(4): 721–736. doi: 10.1017/s0022112070002690
    [3]
    CRIGHTON D G. Radiation from vortex filament motion near a half plane[J]. Journal of Fluid Mechanics, 1972, 51(2): 357–362. doi: 10.1017/s0022112072001235
    [4]
    LEVINE H. Acoustical diffraction radiation[J]. Journal of the Acoustical Society of America, 1972, 52(4A): 1092. doi: 10.1121/1.1913217
    [5]
    HOWE M S. The generation of sound by aerodynamic sources in an inhomogeneous steady flow[J]. Journal of Fluid Mechanics, 1975, 67(3): 597–610. doi: 10.1017/s0022112075000493
    [6]
    HOWE M S. The influence of vortex shedding on the generation of sound by convected turbulence[J]. Journal of Fluid Mechanics, 1976, 76(4): 711–740. doi: 10.1017/s0022112076000864
    [7]
    CHASE D M. Noise radiated from an edge in turbulent flow[J]. AIAA Journal, 1975, 13(8): 1041–1047. doi: 10.2514/3.60502
    [8]
    HOWE M S. A review of the theory of trailing edge noise[J]. Journal of Sound and Vibration, 1978, 61(3): 437–465. doi: 10.1016/0022-460X(78)90391-7
    [9]
    MIGLIORE P, OERLEMANS S. Wind tunnel aeroacoustic tests of six airfoils for use on small wind turbines[J]. Journal of Solar Energy Engineering, 2004, 126(4): 974–985. doi: 10.1115/1.1790535
    [10]
    纪良. 叶轮机宽频噪声产生机理和抑制方法的实验及数值研究[D]. 西安: 西北工业大学, 2016.

    JI L. Experimental and numerical study on mechanism and suppression method of turbo-machinery broadband noise[D]. Xi’an: Northwestern Polytechnical University, 2016.
    [11]
    BILLINGSLEY J, KINNS R. The acoustic telescope[J]. Journal of Sound and Vibration, 1976, 48(4): 485–510. doi: 10.1016/0022-460X(76)90552-6
    [12]
    KINNS R. Binaural source location[J]. Journal of Sound and Vibration, 1976, 44(2): 275–289. doi: 10.1016/0022-460x(76)90774-4
    [13]
    SIJTSMA P. CLEAN based on spatial source coherence[J]. International Journal of Aeroacoustics, 2007, 6(4): 357–374. doi: 10.2514/6.2007-3436
    [14]
    BROOKS T, HUMPHREYS W. Extension of DAMAS phased array processing for spatial coherence determination (DAMAS-C)[C]//Proc of the 12th AIAA/CEAS Aeroacous-tics Conference (27th AIAA Aeroacoustics Conference). 2006. doi: 10.2514/6.2006-2654
    [15]
    DOUGHERTY R. Extensions of DAMAS and benefits and limitations of deconvolution in beamforming[C]//Proc of the 11th AIAA/CEAS Aeroacoustics Conference. 2005. doi: 10.2514/6.2005-2961
    [16]
    SUZUKI T. L1 generalized inverse beam-forming algorithm resolving coherent/incoherent, distributed and multipole sources[J]. Journal of Sound and Vibration, 2011, 330(24): 5835–5851. doi: 10.1016/j.jsv.2011.05.021
    [17]
    MICHEL U, BARSIKOW B, HAVERICH B, et al. Investigation of airframe and jet noise in high-speed flight with a microphone array[C]//Proc of the 3rd AIAA/CEAS Aeroacoustics Conference. 1997. doi: 10.2514/6.1997-1596
    [18]
    HARKER B M, GEE K L, NEILSEN T B, et al. Phased-array measurements of full-scale military jet noise[C]//Proc of the 20th AIAA/CEAS Aeroacoustics Conference. 2014. doi: 10.2514/6.2014-3069
    [19]
    JAEGER S, BURNSIDE N, SODERMAN P, et al. Microphone array assessment of an isolated, 26%-scale, high-fidelity landing gear[C]//Proc of the 8th AIAA/CEAS Aero-acoustics Conference & Exhibit. 2002. doi: 10.2514/6.2002-2410
    [20]
    QUAYLE A, DOWLING A, BABINSKY H, et al. Phased array measurements from landing gear models[C]//Proc of the 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). 2007. doi: 10.2514/6.2007-3463
    [21]
    OERLEMANS S, SIJTSMA P, LÓPEZ B M. Location and quantification of noise sources on a wind turbine[J]. Journal of Sound and Vibration, 2007, 299(4-5): 869–883. doi: 10.1016/j.jsv.2006.07.032
    [22]
    RAMACHANDRAN R, RAMAN G. Evaluation of various beamforming algorithms for wind turbine noise measure-ment[C]//Proc of the 49th AIAA Aerospace Sciences Meet-ing including the New Horizons Forum and Aerospace Exposi-tion. 2011. doi: 10.2514/6.2011-722
    [23]
    QIAO W Y, JI L, TONG F, et al. Separation and quantification of airfoil LE- and TE-noise source with microphone array[C]//Proc of the 7th Berlin Beamforming Conference. 2018: 5-8.
    [24]
    CHEN W J, MAO L Q, XIANG K S, et al. The application of a linear microphone array in the quantitative evaluation of the blade trailing-edge noise reduction[J]. Applied Sciences, 2021, 11(2): 572. doi: 10.3390/app11020572
    [25]
    SILLER H, MICHEL U, ARNOLD F. Investigation of aero-engine core-noise using a phased microphone array[C]//Proc of the 7th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2001. doi: 10.2514/6.2001-2269
    [26]
    BLACODON D, ÉLIAS G. Level estimation of extended acoustic sources using an array of microphones[C]//Proc of the 9th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2003. doi: 10.2514/6.2003-3199
    [27]
    BLACODON D, ÉLIAS G. Level estimation of extended acoustic sources using a parametric method[J]. Journal of Aircraft, 2004, 41(6): 1360–1369. doi: 10.2514/1.3053
    [28]
    MICHEL U, FUNKE S. Noise source analysis of an aeroengine with a new inverse method SODIX[C]//Proc of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). 2008. doi: 10.2514/6.2008-2860
    [29]
    SILLER H, BASSETTI A, DAVIES S et al. Investigation of the noise emission of the V2500 engine of an A320 aircraft during ground tests with a line array and SODIX[C]//Proc of the 5th Berlin beamforming conference. 2014: 134.
    [30]
    SILLER H A, OERTWIG S. Localization and far field extrapolation of acoustic sources from wind tunnel experiments for jet engine installation noise[C]//Proc of the 2018 AIAA/CEAS Aeroacoustics Conference. 2018. doi: 10.2514/6.2018-3294
    [31]
    OERTWIG S, SCHUMACHER T, SILLER H A, et al. Extension of the source localization method SODIX for coherent sound sources[C]//Proc of the AIAA Aviation 2021 Forum, Virtual Event. 2021. doi: 10.2514/6.2021-2128
    [32]
    MORÉ J J, GARBOW B S, HILLSTROM K E. User guide for MINPACK-1[R]. ANL-80-74, 1980. doi: 10.2172/6997568
    [33]
    BROOKS T F, POPE D S, MARCOLINI M A. Airfoil self-noise and prediction[R]. NASA-RP-1218, 1989.
    [34]
    ARINA R, FERRERO A. Data-driven aeroacoustic model-ling: trailing-edge noise[C]//Proc of the AIAA Aviation 2021 Forum, Virtual Event. 2021. doi: 10.2514/6.2021-2237
    [35]
    AMIET R K. Acoustic radiation from an airfoil in a turbulent stream[J]. Journal of Sound and Vibration, 1975, 41(4): 407–420. doi: 10.1016/S0022-460X(75)80105-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article Metrics

    Article views (600) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return