Volume 37 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
HUANG J, GUO Y X, JI J J, et al. Aerodynamic pressure field reconstruction from sparse points using data assimilation method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 9-17 doi: 10.11729/syltlx20230021
Citation: HUANG J, GUO Y X, JI J J, et al. Aerodynamic pressure field reconstruction from sparse points using data assimilation method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 9-17 doi: 10.11729/syltlx20230021

Aerodynamic pressure field reconstruction from sparse points using data assimilation method

doi: 10.11729/syltlx20230021
  • Received Date: 2023-02-24
  • Accepted Date: 2023-04-10
  • Rev Recd Date: 2023-03-22
  • Available Online: 2023-06-02
  • Publish Date: 2023-10-30
  • In wind tunnel experiments, the high-precision pressure distribution of models is highly required, but existing measurement methods still have certain shortcomings. In order to obtain the global pressure distribution of the wind tunnel model, this paper assimilated the sparse measured data and numerical calculation data of the wind tunnel experiment by Ensemble Transform Kalman Filter (ETKF), and realized the high-precision reconstruction of the full-space flow field based on the finite measurement points of the model surface. Two-dimensional airfoil RAE 2822 and NACA 0012 were used for experimental verification. Sparse reconstruction of pressure results of RAE 2822 is more consistent with the measured results than the linear theory correction. This effect is especially evident at the shock wave position, and the prediction error of the pressure coefficient is reduced by about 3%. The lift coefficient and moment coefficient of the wing calculated by using the modified ETKF set mean of attack angle and Mach number are less than 1% error from the experimental values. Experiment of NACA 0012 is oriented to the full-field sensing application of wind tunnel experiments and explore the feasibility of pressure reconstruction based on a small number of measurement points. The experimental results show that the relative error of pressure coefficients reconstructed using six measurement points on the wing object surface can be reduced to 2.42%, and the comparison results show that the assimilation effect is highly dependent on the data point locations.
  • loading
  • [1]
    TEDUKA N, KAMEDA M, ASAI K, et al. Adsorptive pressure-sensitive coatings for unsteady flow measurements[J]. Transactions of the Japan Society of Mechanical Engineers, Series B, 2002, 68(669): 1391–1399. doi: 10.1299/kikaib.68.1391
    [2]
    李峰, 王洪博. 风洞分布测压试验校准技术发展现状[J]. 计测技术, 2020, 40(1): 1–7. doi: 10.11823/j.issn.1674-5795.2020.01.01

    LI F, WANG H B. Overview of calibration technology for wind tunnel distribution pressure test[J]. Metrology & Measurement Technology, 2020, 40(1): 1–7. doi: 10.11823/j.issn.1674-5795.2020.01.01
    [3]
    XIONG W N, ZHU C, GUO D L, et al. Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception[J]. Nano Energy, 2021, 90: 106550. doi: 10.1016/j.nanoen.2021.106550
    [4]
    郭栋梁, 侯超, 朱臣, 等. 飞行器表面气动载荷的柔性智能蒙皮多参量测量[J]. 实验流体力学, 2022, 36(2): 146–154. doi: 10.11729/syltlx20210115

    GUO D L, HOU C, ZHU C, et al. Multi-parameter measurement of aerodynamic load via flexible sensing skin[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 146–154. doi: 10.11729/syltlx20210115
    [5]
    VAMSI KRISHNA C, WANG M Y, HEMATI M S, et al. Reconstructing the time evolution of wall-bounded turbulent flows from non-time-resolved PIV measurements[J]. Physical Review Fluids, 2020, 5(5): 054604. doi: 10.1103/physrevfluids.5.054604
    [6]
    CALLAHAM J L, MAEDA K, BRUNTON S L. Robust flow reconstruction from limited measurements via sparse representation[J]. Physical Review Fluids, 2019, 4(10): 103907. doi: 10.1103/physrevfluids.4.103907
    [7]
    SUN L, WANG J X. Physics-constrained Bayesian neural network for fluid flow reconstruction with sparse and noisy data[J]. Theoretical and Applied Mechanics Letters, 2020, 10(3): 161–169. doi: 10.1016/j.taml.2020.01.031
    [8]
    李静, 张伟伟. 基于Gappy POD的流场数据填补方法[J]. 气体物理, 2020, 5(4): 1–10. doi: 10.19527/j.cnki.2096-1642.0791

    LI J, ZHANG W W. Gappy proper orthogonal decomposition for flow data reconstruction[J]. Physics of Gases, 2020, 5(4): 1–10. doi: 10.19527/j.cnki.2096-1642.0791
    [9]
    周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3): 020891. doi: 10.7527/S1000-6893.2016.0311

    ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field: applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 020891. doi: 10.7527/S1000-6893.2016.0311
    [10]
    GARNER H C, ROGERS E W, ACUM W E, et al. Subsonic wind tunnel wall corrections[R]. AD0657092, 1966.
    [11]
    CARRASSI A, BOCQUET M, BERTINO L, et al. Data assimilation in the geosciences: an overview of methods, issues, and perspectives[J]. WIREs Climate Change, 2018, 9(5): e535. doi: 10.1002/wcc.535
    [12]
    CHANDRAMOULI P, MEMIN E, HEITZ D. 4D large scale variational data assimilation of a turbulent flow with a dynamics error model[J]. Journal of Computational Physics, 2020, 412: 109446. doi: 10.1016/j.jcp.2020.109446
    [13]
    BELLIGOLI Z, DWIGHT R, EITELBERG G. Assessment of a data assimilation technique for wind tunnel wall interference corrections[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 0939. doi: 10.2514/6.2019-0939
    [14]
    LI Q, LI R Y, JI K F, et al. Kalman filter and its application[C]//Proc of the 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS). 2016: 74-77. doi: 10.1109/ICINIS.2015.35
    [15]
    NERGER L, JANJIĆ T, SCHRÖTER J, et al. A unification of ensemble square root Kalman filters[J]. Monthly Weather Review, 2012, 140(7): 2335–2345. doi: 10.1175/mwr-d-11-00102.1
    [16]
    BISHOP C H, ETHERTON B J, MAJUMDAR S J. Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects[J]. Monthly Weather Review, 2001, 129(3): 420–436. doi:10.1175/1520-0493(2001)129<0420:aswtet>2.0.co;2
    [17]
    LE PROVOST M, ELDREDGE J D. Ensemble Kalman filter for vortex models of disturbed aerodynamic flows[J]. Physical Review Fluids, 2021, 6(5): 050506. doi: 10.1103/physrevfluids.6.050506
    [18]
    KATO H, YOSHIZAWA A, UENO G, et al. A data assimilation methodology for reconstructing turbulent flows around aircraft[J]. Journal of Computational Physics, 2015, 283: 559–581. doi: 10.1016/j.jcp.2014.12.013
    [19]
    LI T X, HE C X, WEN X, et al. Data assimilation of rotor flow at hovering state using ensemble Kalman filter[J]. Journal of Visualization, 2023: 1–25. doi: 10.1007/s12650-022-00906-y
    [20]
    MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55–61. doi: 10.1080/00401706.2000.10485979
    [21]
    HAASE W, BRADSMA F, ELSHOLZ E, et al. EUROVAL-An European initiative on validation of CFD codes[M]. Wiesbaden: Springer Fachmedien Wiesbaden, 1993, 42: 123-184. doi: 10.1007/978-3-663-14131-0.
    [22]
    COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE 2822: pressure distributions, and boundary layer and wake measurements[C]//Proc of the AGARD Report AR. 1979.
    [23]
    LADSON C L, HILL A S, JOHNSON W G. Pressure distributions from high Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel[R]. NASA-TM-100526, 1987.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(7)

    Article Metrics

    Article views (284) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return